Topological Dimension and Dynamical Systems


Author: Michel Coornaert
Publisher: Springer
ISBN: 3319197940
Category: Mathematics
Page: 233
View: 6027

Continue Reading →

Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts. A large number of revisions and additions have been made to the original text. Chapter 5 contains an entirely new section devoted to the Sorgenfrey line. Two chapters have also been added: Chapter 9 on amenable groups and Chapter 10 on mean topological dimension for continuous actions of countable amenable groups. These new chapters contain material that have never before appeared in textbook form. The chapter on amenable groups is based on Følner’s characterization of amenability and may be read independently from the rest of the book. Although the contents of this book lead directly to several active areas of current research in mathematics and mathematical physics, the prerequisites needed for reading it remain modest; essentially some familiarities with undergraduate point-set topology and, in order to access the final two chapters, some acquaintance with basic notions in group theory. Topological Dimension and Dynamical Systems is intended for graduate students, as well as researchers interested in topology and dynamical systems. Some of the topics treated in the book directly lead to research areas that remain to be explored.

Dynamical Systems

An Introduction
Author: Luis Barreira,Claudia Valls
Publisher: Springer Science & Business Media
ISBN: 1447148355
Category: Mathematics
Page: 209
View: 5688

Continue Reading →

The theory of dynamical systems is a broad and active research subject with connections to most parts of mathematics. Dynamical Systems: An Introduction undertakes the difficult task to provide a self-contained and compact introduction. Topics covered include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as a brief introduction to ergodic theory. In particular, the authors consider topological recurrence, topological entropy, homeomorphisms and diffeomorphisms of the circle, Sharkovski's ordering, the Poincaré-Bendixson theory, and the construction of stable manifolds, as well as an introduction to geodesic flows and the study of hyperbolicity (the latter is often absent in a first introduction). Moreover, the authors introduce the basics of symbolic dynamics, the construction of symbolic codings, invariant measures, Poincaré's recurrence theorem and Birkhoff's ergodic theorem. The exposition is mathematically rigorous, concise and direct: all statements (except for some results from other areas) are proven. At the same time, the text illustrates the theory with many examples and 140 exercises of variable levels of difficulty. The only prerequisites are a background in linear algebra, analysis and elementary topology. This is a textbook primarily designed for a one-semester or two-semesters course at the advanced undergraduate or beginning graduate levels. It can also be used for self-study and as a starting point for more advanced topics.

Attractors for infinite-dimensional non-autonomous dynamical systems


Author: Alexandre Carvalho,José A. Langa,James Robinson
Publisher: Springer Science & Business Media
ISBN: 1461445809
Category: Mathematics
Page: 412
View: 4598

Continue Reading →

The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.

Handbook of Dynamical Systems


Author: B. Fiedler
Publisher: Gulf Professional Publishing
ISBN: 9780080532844
Category: Science
Page: 1098
View: 2270

Continue Reading →

This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others. While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to name just a few, are ubiquitous dynamical concepts throughout the articles.

Vorlesungen Über die Zahlentheorie der Quaternionen


Author: Adolf Hurwitz
Publisher: Springer-Verlag
ISBN: 3642475361
Category: Mathematics
Page: 76
View: 3794

Continue Reading →

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

A Course on Rough Paths

With an Introduction to Regularity Structures
Author: Peter K. Friz,Martin Hairer
Publisher: N.A
ISBN: 9783319083339
Category:
Page: 268
View: 7341

Continue Reading →

Handbook of Dynamical Systems


Author: Bernold Fiedler
Publisher: N.A
ISBN: 9780444501684
Category: Differentiable dynamical systems
Page: 1086
View: 5676

Continue Reading →

This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others. While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to name just a few, are ubiquitous dynamical concepts throughout the articles.

Real and Abstract Analysis

A modern treatment of the theory of functions of a real variable
Author: Edwin Hewitt,Karl Stromberg
Publisher: Springer-Verlag
ISBN: 3662297949
Category: Mathematics
Page: 476
View: 3096

Continue Reading →

Analysis II


Author: Vladimir A. Zorich
Publisher: Springer
ISBN: 9783540462316
Category: Mathematics
Page: 708
View: 8601

Continue Reading →

Ausführlich, klar, exakt, solide: die Anfänge der Analysis in 2 Bänden. Von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie u.a. Differenzialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Deutlich auf naturwissenschaftliche Fragen ausgerichtet, erläutert dieses Werk detailliert Begriffe, Inhalte und Sätze der Integral- und Differenzialrechnung. Die Fülle hilfreicher Beispiele, Aufgaben und Anwendungen ist selten in Analysisbüchern zu finden. Band 2 beschreibt den heutigen Stand der klassischen Analysis.

G-Functions and Geometry

A Publication of the Max-Planck-Institut für Mathematik, Bonn
Author: Yves André
Publisher: Springer-Verlag
ISBN: 366314108X
Category: Mathematics
Page: 232
View: 7503

Continue Reading →

Gewöhnliche Differentialgleichungen


Author: Vladimir I. Arnold
Publisher: Springer-Verlag
ISBN: 3642564801
Category: Mathematics
Page: 344
View: 6849

Continue Reading →

nen (die fast unverändert in moderne Lehrbücher der Analysis übernommen wurde) ermöglichten ihm nach seinen eigenen Worten, "in einer halben Vier telstunde" die Flächen beliebiger Figuren zu vergleichen. Newton zeigte, daß die Koeffizienten seiner Reihen proportional zu den sukzessiven Ableitungen der Funktion sind, doch ging er darauf nicht weiter ein, da er zu Recht meinte, daß die Rechnungen in der Analysis bequemer auszuführen sind, wenn man nicht mit höheren Ableitungen arbeitet, sondern die ersten Glieder der Reihenentwicklung ausrechnet. Für Newton diente der Zusammenhang zwischen den Koeffizienten der Reihe und den Ableitungen eher dazu, die Ableitungen zu berechnen als die Reihe aufzustellen. Eine von Newtons wichtigsten Leistungen war seine Theorie des Sonnensy stems, die in den "Mathematischen Prinzipien der Naturlehre" ("Principia") ohne Verwendung der mathematischen Analysis dargestellt ist. Allgemein wird angenommen, daß Newton das allgemeine Gravitationsgesetz mit Hilfe seiner Analysis entdeckt habe. Tatsächlich hat Newton (1680) lediglich be wiesen, daß die Bahnkurven in einem Anziehungsfeld Ellipsen sind, wenn die Anziehungskraft invers proportional zum Abstandsquadrat ist: Auf das Ge setz selbst wurde Newton von Hooke (1635-1703) hingewiesen (vgl. § 8) und es scheint, daß es noch von weiteren Forschern vermutet wurde.

Einführung in die Mechanik und Symmetrie

Eine grundlegende Darstellung klassischer mechanischer Systeme
Author: Jerrold E. Marsden,Tudor S. Ratiu
Publisher: Springer-Verlag
ISBN: 3642568599
Category: Mathematics
Page: 598
View: 2934

Continue Reading →

Symmetrie spielt in der Mechanik eine große Rolle. Dieses Buch beschreibt die Entwicklung zugrunde liegender Theorien. Besonderes Gewicht wird der Symmetrie beigemessen. Ursache hierfür sind Entwicklungen im Bereich dynamischer Systeme, der Einsatz geometrischer Verfahren und neue Anwendungen. Dieses Lehrbuch stellt Grundlagen bereit und beschreibt zahlreiche spezifische Anwendungen. Interessant für Physiker und Ingenieure. Ausgewählte Beispiele, Anwendungen, aktuelle Verfahren/Techniken veranschaulichen die Theorie.

Differentialgleichungen und ihre Anwendungen


Author: Martin Braun
Publisher: Springer-Verlag
ISBN: 3642975151
Category: Mathematics
Page: 598
View: 959

Continue Reading →

Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#

Briefe zur Wellenmechanik


Author: K. Przibram
Publisher: Springer-Verlag
ISBN: 3642520448
Category: Science
Page: 68
View: 8008

Continue Reading →

Eine große physikalische Theorie wie die Schrödingersche Wellenmechanik nimmt, wenn sie sich bewährt, mit der Zeit ein unpersönliches, von ihrem Urheber ganz losgelöstes Eigendasein an und wird schließlich als selbstverständlich hingenommen. Man vergißt da, mit wieviel inneren Kämpfen, Hoffnungen und Ent täuschungen ihre Entstehung verbunden war, und all das Für und Wider in den Reaktionen der Zeitgenossen. Diese mehr persönliche Seite kann wieder zum Leben erweckt werden, wenn Briefe wie die hier wiedergegebenen aus jener Zeit vorhanden sind. Schrödingers Witwe, Frau Annemarie Schrödinger, hegte den Wunsch, der die Wellenmechanik betreffende Briefwechsel ihres Gatten möge im Rahmen der Schriften der Österreichischen Aka demie der Wissenschaften veröffentlicht und so einem größeren wissenschaftlichen Kreise zugänglich gemacht werden. Sie hat sich an den Unterzeichneten, den Senior der österreichischen Physiker, mit dem Ersuchen gewandt, er möge ihren Wunsch der Akademie zur Kenntnis bringen. Ein die Publikation der Briefe betreffender An trag wurde in der Sitzung der mathematisch-naturwissenschaftlichen Klasse der Akademie am 25. Januar 1962 einstimmig und mit freu diger Dankbarkeit angenommen; die Redaktion wurde dem Unter zeichneten anvertraut.