Topics in Algebraic and Topological K-Theory


Author: Paul Frank Baum,Ralf Meyer,Rubén Sánchez-García,Marco Schlichting,Bertrand Toën
Publisher: Springer Science & Business Media
ISBN: 3642157076
Category: Mathematics
Page: 308
View: 1017

Continue Reading →

This volume is an introductory textbook to K-theory, both algebraic and topological, and to various current research topics within the field, including Kasparov's bivariant K-theory, the Baum-Connes conjecture, the comparison between algebraic and topological K-theory of topological algebras, the K-theory of schemes, and the theory of dg-categories.

Lecture Notes in Algebraic Topology


Author: James Frederic Davis,Paul Kirk
Publisher: American Mathematical Soc.
ISBN: 0821821601
Category: Mathematics
Page: 367
View: 6825

Continue Reading →

The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the ``big picture'', teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Algebraic K-Theory


Author: V. Srinivas
Publisher: Springer Science & Business Media
ISBN: 0817647368
Category: Mathematics
Page: 341
View: 7668

Continue Reading →

Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application is also given to modules of finite length and finite projective dimension over the local ring of a normal surface singularity. These results lead the reader to some interesting conclusions regarding the Chow group of varieties. "It is a pleasure to read this mathematically beautiful book..." ---WW.J. Julsbergen, Mathematics Abstracts "The book does an admirable job of presenting the details of Quillen's work..." ---Mathematical Reviews

K-Theory

An Introduction
Author: Max Karoubi
Publisher: Springer Science & Business Media
ISBN: 3540798900
Category: Mathematics
Page: 316
View: 8625

Continue Reading →

From the Preface: K-theory was introduced by A. Grothendieck in his formulation of the Riemann- Roch theorem. For each projective algebraic variety, Grothendieck constructed a group from the category of coherent algebraic sheaves, and showed that it had many nice properties. Atiyah and Hirzebruch considered a topological analog defined for any compact space X, a group K{X) constructed from the category of vector bundles on X. It is this ''topological K-theory" that this book will study. Topological K-theory has become an important tool in topology. Using K- theory, Adams and Atiyah were able to give a simple proof that the only spheres which can be provided with H-space structures are S1, S3 and S7. Moreover, it is possible to derive a substantial part of stable homotopy theory from K-theory. The purpose of this book is to provide advanced students and mathematicians in other fields with the fundamental material in this subject. In addition, several applications of the type described above are included. In general we have tried to make this book self-contained, beginning with elementary concepts wherever possible; however, we assume that the reader is familiar with the basic definitions of homotopy theory: homotopy classes of maps and homotopy groups.Thus this book might be regarded as a fairly self-contained introduction to a "generalized cohomology theory".

Complex Topological K-Theory


Author: Efton Park
Publisher: Cambridge University Press
ISBN: 1139469746
Category: Mathematics
Page: N.A
View: 2793

Continue Reading →

Topological K-theory is a key tool in topology, differential geometry and index theory, yet this is the first contemporary introduction for graduate students new to the subject. No background in algebraic topology is assumed; the reader need only have taken the standard first courses in real analysis, abstract algebra, and point-set topology. The book begins with a detailed discussion of vector bundles and related algebraic notions, followed by the definition of K-theory and proofs of the most important theorems in the subject, such as the Bott periodicity theorem and the Thom isomorphism theorem. The multiplicative structure of K-theory and the Adams operations are also discussed and the final chapter details the construction and computation of characteristic classes. With every important aspect of the topic covered, and exercises at the end of each chapter, this is the definitive book for a first course in topological K-theory.

Higher Algebraic K-Theory: An Overview


Author: Emilio Lluis-Puebla,Jean-Louis Loday,Henri Gillet,Christophe Soule,Victor Snaith
Publisher: Springer
ISBN: 3540466398
Category: Mathematics
Page: 166
View: 9336

Continue Reading →

This book is a general introduction to Higher Algebraic K-groups of rings and algebraic varieties, which were first defined by Quillen at the beginning of the 70's. These K-groups happen to be useful in many different fields, including topology, algebraic geometry, algebra and number theory. The goal of this volume is to provide graduate students, teachers and researchers with basic definitions, concepts and results, and to give a sampling of current directions of research. Written by five specialists of different parts of the subject, each set of lectures reflects the particular perspective ofits author. As such, this volume can serve as a primer (if not as a technical basic textbook) for mathematicians from many different fields of interest.

Introduction to Algebraic K-Theory. (AM-72)


Author: John Milnor
Publisher: Princeton University Press
ISBN: 140088179X
Category: Mathematics
Page: 200
View: 3910

Continue Reading →

Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or K1∧ respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic.

Algebraic Topology of Finite Topological Spaces and Applications


Author: Jonathan A. Barmak
Publisher: Springer Science & Business Media
ISBN: 3642220029
Category: Mathematics
Page: 170
View: 9685

Continue Reading →

This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.

Mixed Motives and Algebraic K-Theory


Author: Uwe Jannsen
Publisher: Springer
ISBN: 3540469419
Category: Mathematics
Page: 250
View: 2918

Continue Reading →

The relations that could or should exist between algebraic cycles, algebraic K-theory, and the cohomology of - possibly singular - varieties, are the topic of investigation of this book. The author proceeds in an axiomatic way, combining the concepts of twisted Poincaré duality theories, weights, and tensor categories. One thus arrives at generalizations to arbitrary varieties of the Hodge and Tate conjectures to explicit conjectures on l-adic Chern characters for global fields and to certain counterexamples for more general fields. It is to be hoped that these relations ions will in due course be explained by a suitable tensor category of mixed motives. An approximation to this is constructed in the setting of absolute Hodge cycles, by extending this theory to arbitrary varieties. The book can serve both as a guide for the researcher, and as an introduction to these ideas for the non-expert, provided (s)he knows or is willing to learn about K-theory and the standard cohomology theories of algebraic varieties.

Cohomology of Groups and Algebraic K-theory


Author: Lizhen Ji,Kefeng Liu,Shing-Tung Yau
Publisher: International Press of Boston
ISBN: 9781571461445
Category: Mathematics
Page: 517
View: 9592

Continue Reading →

ALM Published jointly by International Press and by Higher Education Press of China, the Advanced Lectures in Mathematics (ALM) series brings the latest mathematical developments worldwide to both researchers and students. Each volume consists of either an expository monograph or a collection of significant introductions to important topics. The ALM series emphasizes discussion of the history and significance of each topic discussed, with an overview of the current status of research, and presentation of the newest cutting-edge results. Cohomology of Groups and Algebraic K-theory Cohomology of groups is a fundamental tool in many subjects of modern mathematics. One important generalized cohomology theory is the algebraic K-theory. Indeed, algebraic K-groups of rings are important invariants of the rings and have played important roles in algebra, topology, number theory, etc. This volume consists of expanded lecture notes from a 2007 seminar at Zhejiang University in China, at which several leading experts presented introductions, to and surveys of, many aspects of cohomology of groups and algebraic K-theory, along with their broad applications. Two foundational papers on algebraic K-theory by Daniel Quillen are also included.

Algebraic K-Theory


Author: Richard G. Swan
Publisher: Springer
ISBN: 3540359176
Category: Mathematics
Page: 264
View: 3865

Continue Reading →

From the Introduction: "These notes are taken from a course on algebraic K-theory [given] at the University of Chicago in 1967. They also include some material from an earlier course on abelian categories, elaborating certain parts of Gabriel's thesis. The results on K-theory are mostly of a very general nature."

An Introduction to K-Theory for C*-Algebras


Author: M. Rørdam,Flemming Larsen,N. Laustsen
Publisher: Cambridge University Press
ISBN: 9780521789448
Category: Mathematics
Page: 242
View: 6673

Continue Reading →

This book provides a very elementary introduction to K-theory for C*-algebras, and is ideal for beginning graduate students.

Handbook of K-Theory


Author: Eric Friedlander,Daniel R. Grayson
Publisher: Springer Science & Business Media
ISBN: 354023019X
Category: Mathematics
Page: 1163
View: 7910

Continue Reading →

This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.

The $K$-book

An Introduction to Algebraic $K$-theory
Author: Charles A. Weibel
Publisher: American Mathematical Soc.
ISBN: 0821891324
Category: Mathematics
Page: 618
View: 8312

Continue Reading →

Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr

Geometric and Topological Methods for Quantum Field Theory


Author: Hernan Ocampo,Eddy Pariguan,Sylvie Paycha
Publisher: Cambridge University Press
ISBN: 113948673X
Category: Science
Page: N.A
View: 4307

Continue Reading →

Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.

A Concise Course in Algebraic Topology


Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category: Mathematics
Page: 243
View: 7963

Continue Reading →

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

The Local Structure of Algebraic K-Theory


Author: Bjørn Ian Dundas,Thomas G. Goodwillie,Randy McCarthy
Publisher: Springer Science & Business Media
ISBN: 1447143930
Category: Mathematics
Page: 436
View: 7276

Continue Reading →

Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.

A1-Algebraic Topology over a Field


Author: Fabien Morel
Publisher: Springer
ISBN: 3642295142
Category: Mathematics
Page: 259
View: 2415

Continue Reading →

This text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible. It is a natural sequel to the foundational paper on A1-homotopy theory written together with V. Voevodsky. Inspired by classical results in algebraic topology, we present new techniques, new results and applications related to the properties and computations of A1-homotopy sheaves, A1-homology sheaves, and sheaves with generalized transfers, as well as to algebraic vector bundles over affine smooth varieties.

Algebraic Topology


Author: Tammo tom Dieck
Publisher: European Mathematical Society
ISBN: 9783037190487
Category: Mathematics
Page: 567
View: 6886

Continue Reading →

This book is written as a textbook on algebraic topology. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (masters) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.