Time Series Analysis

Forecasting and Control
Author: George E. P. Box,Gwilym M. Jenkins,Gregory C. Reinsel,Greta M. Ljung
Publisher: John Wiley & Sons
ISBN: 1118674928
Category: Mathematics
Page: 712
View: 7523

Continue Reading →

Praise for the Fourth Edition “The book follows faithfully the style of the original edition. The approach is heavily motivated by real-world time series, and by developing a complete approach to model building, estimation, forecasting and control." - Mathematical Reviews Bridging classical models and modern topics, the Fifth Edition of Time Series Analysis: Forecasting and Control maintains a balanced presentation of the tools for modeling and analyzing time series. Also describing the latest developments that have occurred in the field over the past decade through applications from areas such as business, finance, and engineering, the Fifth Edition continues to serve as one of the most influential and prominent works on the subject. Time Series Analysis: Forecasting and Control, Fifth Edition provides a clearly written exploration of the key methods for building, classifying, testing, and analyzing stochastic models for time series and describes their use in five important areas of application: forecasting; determining the transfer function of a system; modeling the effects of intervention events; developing multivariate dynamic models; and designing simple control schemes. Along with these classical uses, the new edition covers modern topics with new features that include: A redesigned chapter on multivariate time series analysis with an expanded treatment of Vector Autoregressive, or VAR models, along with a discussion of the analytical tools needed for modeling vector time series An expanded chapter on special topics covering unit root testing, time-varying volatility models such as ARCH and GARCH, nonlinear time series models, and long memory models Numerous examples drawn from finance, economics, engineering, and other related fields The use of the publicly available R software for graphical illustrations and numerical calculations along with scripts that demonstrate the use of R for model building and forecasting Updates to literature references throughout and new end-of-chapter exercises Streamlined chapter introductions and revisions that update and enhance the exposition Time Series Analysis: Forecasting and Control, Fifth Edition is a valuable real-world reference for researchers and practitioners in time series analysis, econometrics, finance, and related fields. The book is also an excellent textbook for beginning graduate-level courses in advanced statistics, mathematics, economics, finance, engineering, and physics.

Developments in Time Series Analysis


Author: T. Subba Rao
Publisher: CRC Press
ISBN: 9780412492600
Category: Mathematics
Page: 440
View: 4594

Continue Reading →

This volume contains 27 papers, written by time series analysts, dealing with statistical theory, methodology and applications. The emphasis is on the recent developments in the analysis of linear, onlinear (non-Gaussian), stationary and nonstationary time series. The topics include cointegration, estimation and asymptotic theory, Kalman filtering, nonparametric statistical inference, long memory models, nonlinear models, spectral analysis of stationary and nonstationary processes. Quite a number of papers are devoted to modelling and analysis of real time series, and the econometricians, mathematical statisticians, communications engineers and scientists who use time series techniques and Fourier analysis should find the papers in this volume useful.

An Introduction to Time Series Analysis and Forecasting

With Applications of SAS® and SPSS®
Author: Robert Alan Yaffee,Monnie McGee
Publisher: Elsevier
ISBN: 0080478700
Category: Mathematics
Page: 528
View: 8856

Continue Reading →

Providing a clear explanation of the fundamental theory of time series analysis and forecasting, this book couples theory with applications of two popular statistical packages--SAS and SPSS. The text examines moving average, exponential smoothing, Census X-11 deseasonalization, ARIMA, intervention, transfer function, and autoregressive error models and has brief discussions of ARCH and GARCH models. The book features treatments of forecast improvement with regression and autoregression combination models and model and forecast evaluation, along with a sample size analysis for common time series models to attain adequate statistical power. The careful linkage of the theoretical constructs with the practical considerations involved in utilizing the statistical packages makes it easy for the user to properly apply these techniques. Describes principal approaches to time series analysis and forecasting Presents examples from public opinion research, policy analysis, political science, economics, and sociology Math level pitched to general social science usage Glossary makes the material accessible for readers at all levels

Time Series Analysis and Forecasting by Example


Author: Søren Bisgaard,Murat Kulahci
Publisher: John Wiley & Sons
ISBN: 9781118056950
Category: Mathematics
Page: 400
View: 9017

Continue Reading →

An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in detail and explain the relevant theory while also focusing on the interpretation of results in data analysis. Following a discussion of why autocorrelation is often observed when data is collected in time, subsequent chapters explore related topics, including: Graphical tools in time series analysis Procedures for developing stationary, non-stationary, and seasonal models How to choose the best time series model Constant term and cancellation of terms in ARIMA models Forecasting using transfer function-noise models The final chapter is dedicated to key topics such as spurious relationships, autocorrelation in regression, and multiple time series. Throughout the book, real-world examples illustrate step-by-step procedures and instructions using statistical software packages such as SAS®, JMP, Minitab, SCA, and R. A related Web site features PowerPoint slides to accompany each chapter as well as the book's data sets. With its extensive use of graphics and examples to explain key concepts, Time Series Analysis and Forecasting by Example is an excellent book for courses on time series analysis at the upper-undergraduate and graduate levels. it also serves as a valuable resource for practitioners and researchers who carry out data and time series analysis in the fields of engineering, business, and economics.

Time Series Analysis

Regression Techniques
Author: Charles W. Ostrom
Publisher: SAGE
ISBN: 9780803931350
Category: Social Science
Page: 95
View: 7136

Continue Reading →

The great advantage of time series regression analysis is that it can both explain the past and predict the future behavior of variables. This volume explores the regression (or structural equation) approach to the analysis of time series data. It also introduces the Box-Jenkins time series method in an attempt to bridge partially the gap between the two approaches.

Time Series Analysis

Univariate and Multivariate Methods (Classic Version)
Author: William W. S. Wei
Publisher: Pearson
ISBN: 9780134995366
Category: Time-series analysis
Page: 636
View: 8983

Continue Reading →

With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.

Time Series Analysis

Methods and Applications
Author: Tata Subba Rao,Suhasini Subba Rao,Calyampudi Radhakrishna Rao
Publisher: Elsevier
ISBN: 0444538585
Category: Mathematics
Page: 755
View: 922

Continue Reading →

The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments. The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. Comprehensively presents the various aspects of statistical methodology Discusses a wide variety of diverse applications and recent developments Contributors are internationally renowened experts in their respective areas

Time Series Analysis


Author: Henrik Madsen
Publisher: CRC Press
ISBN: 142005967X
Category: Mathematics
Page: 400
View: 2849

Continue Reading →

With a focus on analyzing and modeling linear dynamic systems using statistical methods, Time Series Analysis formulates various linear models, discusses their theoretical characteristics, and explores the connections among stochastic dynamic models. Emphasizing the time domain description, the author presents theorems to highlight the most important results, proofs to clarify some results, and problems to illustrate the use of the results for modeling real-life phenomena. The book first provides the formulas and methods needed to adapt a second-order approach for characterizing random variables as well as introduces regression methods and models, including the general linear model. It subsequently covers linear dynamic deterministic systems, stochastic processes, time domain methods where the autocorrelation function is key to identification, spectral analysis, transfer-function models, and the multivariate linear process. The text also describes state space models and recursive and adaptivemethods. The final chapter examines a host of practical problems, including the predictions of wind power production and the consumption of medicine, a scheduling system for oil delivery, and the adaptive modeling of interest rates. Concentrating on the linear aspect of this subject, Time Series Analysis provides an accessible yet thorough introduction to the methods for modeling linear stochastic systems. It will help you understand the relationship between linear dynamic systems and linear stochastic processes.

Applied Time Series Analysis with R, Second Edition


Author: Wayne A. Woodward,Henry L. Gray,Alan C. Elliott
Publisher: CRC Press
ISBN: 1498734316
Category: Mathematics
Page: 634
View: 5713

Continue Reading →

Virtually any random process developing chronologically can be viewed as a time series. In economics closing prices of stocks, the cost of money, the jobless rate, and retail sales are just a few examples of many. Developed from course notes and extensively classroom-tested, Applied Time Series Analysis with R, Second Edition includes examples across a variety of fields, develops theory, and provides an R-based software package to aid in addressing time series problems in a broad spectrum of fields. The material is organized in an optimal format for graduate students in statistics as well as in the natural and social sciences to learn to use and understand the tools of applied time series analysis. Features Gives readers the ability to actually solve significant real-world problems Addresses many types of nonstationary time series and cutting-edge methodologies Promotes understanding of the data and associated models rather than viewing it as the output of a "black box" Provides the R package tswge available on CRAN which contains functions and over 100 real and simulated data sets to accompany the book. Extensive help regarding the use of tswge functions is provided in appendices and on an associated website. Over 150 exercises and extensive support for instructors The second edition includes additional real-data examples, uses R-based code that helps students easily analyze data, generate realizations from models, and explore the associated characteristics. It also adds discussion of new advances in the analysis of long memory data and data with time-varying frequencies (TVF).

Case Studies in Time Series Analysis


Author: Zhongjie Xie
Publisher: World Scientific
ISBN: 9789810210175
Category: Science
Page: 282
View: 2285

Continue Reading →

This book is a monograph on case studies using time series analysis, which includes the main research works applied to practical projects by the author in the past 15 years. The works cover different problems in broad fields, such as: engineering, labour protection, astronomy, physiology, endocrinology, oil development, etc. The first part of this book introduces some basic knowledge of time series analysis which is necessary for the reader to understand the methods and the theory used in the procedure for solving problems. The second part is the main part of this book ? case studies in different fields.

Time Series Analysis

With Applications in R
Author: Jonathan D. Cryer,Kung-Sik Chan
Publisher: Springer Science & Business Media
ISBN: 0387759581
Category: Business & Economics
Page: 491
View: 4051

Continue Reading →

This book presents an accessible approach to understanding time series models and their applications. The ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment.

Time Series Analysis by State Space Methods


Author: James Durbin,Siem Jan Koopman
Publisher: OUP Oxford
ISBN: 0191627194
Category: Mathematics
Page: 368
View: 2028

Continue Reading →

This new edition updates Durbin & Koopman's important text on the state space approach to time series analysis. The distinguishing feature of state space time series models is that observations are regarded as made up of distinct components such as trend, seasonal, regression elements and disturbance terms, each of which is modelled separately. The techniques that emerge from this approach are very flexible and are capable of handling a much wider range of problems than the main analytical system currently in use for time series analysis, the Box-Jenkins ARIMA system. Additions to this second edition include the filtering of nonlinear and non-Gaussian series. Part I of the book obtains the mean and variance of the state, of a variable intended to measure the effect of an interaction and of regression coefficients, in terms of the observations. Part II extends the treatment to nonlinear and non-normal models. For these, analytical solutions are not available so methods are based on simulation.

Elements of Multivariate Time Series Analysis


Author: Gregory C. Reinsel
Publisher: Springer Science & Business Media
ISBN: 9780387406190
Category: Mathematics
Page: 358
View: 8328

Continue Reading →

This text concentrates on the time-domain analysis of multivariate time series, and assumes a background in univariate time series analysis. It also includes exercise sets and multivariate time series data sets. The book should also be useful to researchers and graduate students in the areas of statistics, econometrics, business, and engineering.

Regression Models for Time Series Analysis


Author: Benjamin Kedem,Konstantinos Fokianos
Publisher: John Wiley & Sons
ISBN: 0471461687
Category: Mathematics
Page: 360
View: 4198

Continue Reading →

A thorough review of the most current regression methods in time series analysis Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis. Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data. The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements. Notably, the book covers: * Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling * Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm * Prediction and interpolation * Stationary processes

Time Series Analysis and Forecasting

Selected Contributions from the ITISE Conference
Author: Ignacio Rojas,Héctor Pomares
Publisher: Springer
ISBN: 3319287257
Category: Business & Economics
Page: 384
View: 5358

Continue Reading →

This volume presents selected peer-reviewed contributions from The International Work-Conference on Time Series, ITISE 2015, held in Granada, Spain, July 1-3, 2015. It discusses topics in time series analysis and forecasting, advanced methods and online learning in time series, high-dimensional and complex/big data time series as well as forecasting in real problems. The International Work-Conferences on Time Series (ITISE) provide a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing the disciplines of computer science, mathematics, statistics and econometrics.

Forecasting and time series analysis


Author: Douglas C. Montgomery,Lynwood A. Johnson,John S. Gardiner
Publisher: McGraw-Hill Companies
ISBN: 9780070428584
Category: Science
Page: 381
View: 9086

Continue Reading →

Threshold Models in Non-linear Time Series Analysis


Author: H. Tong
Publisher: Springer Science & Business Media
ISBN: 1468478885
Category: Mathematics
Page: 323
View: 9575

Continue Reading →

In the last two years or so, I was most fortunate in being given opportunities of lecturing on a new methodology to a variety of audiences in Britain, China, Finland, France and Spain. Despite my almost Confucian attitude of preferring talking (i.e. a transient record) to writing (i.e. a permanent record), the warm encouragement of friends has led to the ensuing notes. I am also only too conscious of the infancy of the methodology introduced in these notes. However, it is my sincere hope that exposure to a wider audience will accelerate its maturity. Readers are assumed to be familiar with the basic theory of time series analysis. The book by Professor M.B. Priestley (1981) may be used as a general reference. Chapter One is addressed to the general question: "why do we need non-linear time series models?" After describing some significant advantages of linear models, it singles out several major limitations of linearity. Of course, the selection reflects my personal view on the subject, which is only at its very beginning, although there does seem to be a general agreement in the literature that time irr'eversibility and limit cycles are among the most obvious.

Interrupted Time Series Analysis


Author: David McDowall,Richard McCleary,Errol Meidinger,Richard A. Hay, Jr,Professor of Criminology Law & Society and Planning Policy & Design Richard McCleary
Publisher: SAGE
ISBN: 9780803914933
Category: Social Science
Page: 96
View: 8771

Continue Reading →

Describes ARIMA, or Box-Tiao models, widely used in the analysis of interrupted time series quasi-experiments. Assumes no statistical background beyond simple correlation.Learn more about "The Little Green Book" - QASS Series! Click Here

Time Series Analysis and Macroeconometric Modelling

The Collected Papers of Kenneth F. Wallis
Author: Kenneth Frank Wallis
Publisher: Edward Elgar Publishing
ISBN: 9781782541622
Category: Business & Economics
Page: 426
View: 6971

Continue Reading →

'An excellent reference volume of this author's work, bringing together articles published over a 25 year span on the statistical analysis of economic time series, large scale macroeconomic modelling and the interface between them.' - Aslib Book Guide This major volume of essays by Kenneth F. Wallis features 28 articles published over a quarter of a century on the statistical analysis of economic time series, large-scale macroeconometric modelling, and the interface between them. The first part deals with time-series econometrics and includes significant early contributions to the development of the LSE tradition in time-series econometrics, which is the dominant British tradition and has considerable influence worldwide. Later sections discuss theoretical and practical issues in modelling seasonality and forecasting with applications in both large-scale and small-scale models. The final section summarizes the research programme of the ESRC Macroeconomic Modelling Bureau, a unique comparison project among economy-wide macroeconometric models.

Time Series Analysis for the Social Sciences


Author: Janet M. Box-Steffensmeier,John R. Freeman,Jon C. W. Pevehouse,Matthew P. Hitt
Publisher: Cambridge University Press
ISBN: 0521871166
Category: Political Science
Page: 272
View: 6433

Continue Reading →

This book provides instruction and examples of the core methods in time series econometrics, drawing from several main fields of the social sciences.