**Author**: Michael J. Crawley

**Publisher:**John Wiley & Sons

**ISBN:**1118448960

**Category:**Mathematics

**Page:**1080

**View:**4860

Skip to content
# Search Results for: the-r-book

**Author**: Michael J. Crawley

**Publisher:** John Wiley & Sons

**ISBN:** 1118448960

**Category:** Mathematics

**Page:** 1080

**View:** 4860

Hugely successful and popular text presenting an extensiveand comprehensive guide for all R users The R language is recognized as one of the most powerful andflexible statistical software packages, enabling users to applymany statistical techniques that would be impossible without suchsoftware to help implement such large data sets. R has become anessential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphicsthroughout. Introduces a clear structure with numbered section headings tohelp readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis andMeta-Analysis. Presents a fully revised and updated bibliography and referencesection. Is supported by an accompanying website allowing examples fromthe text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this textis the one that should be on your shelf. The breadth oftopics covered is unsurpassed when it comes to texts on dataanalysis in R.’ (The American Statistician, August2008) ‘The High-level software language of R is setting standardsin quantitative analysis. And now anybody can get to grips with itthanks to The R Book…’ (Professional Pensions,July 2007)

**Author**: CTI Reviews

**Publisher:** Cram101 Textbook Reviews

**ISBN:** 1467248118

**Category:** Education

**Page:** 450

**View:** 8959

Facts101 is your complete guide to The R Book. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

**Author**: Brian Dennis

**Publisher:** CRC Press

**ISBN:** 1439875405

**Category:** Mathematics

**Page:** 360

**View:** 2726

R is the amazing, free, open-access software package for scientific graphs and calculations used by scientists worldwide. The R Student Companion is a student-oriented manual describing how to use R in high school and college science and mathematics courses. Written for beginners in scientific computation, the book assumes the reader has just some high school algebra and has no computer programming background. The author presents applications drawn from all sciences and social sciences and includes the most often used features of R in an appendix. In addition, each chapter provides a set of computational challenges: exercises in R calculations that are designed to be performed alone or in groups. Several of the chapters explore algebra concepts that are highly useful in scientific applications, such as quadratic equations, systems of linear equations, trigonometric functions, and exponential functions. Each chapter provides an instructional review of the algebra concept, followed by a hands-on guide to performing calculations and graphing in R. R is intuitive, even fun. Fantastic, publication-quality graphs of data, equations, or both can be produced with little effort. By integrating mathematical computation and scientific illustration early in a student’s development, R use can enhance one's understanding of even the most difficult scientific concepts. While R has gained a strong reputation as a package for statistical analysis, The R Student Companion approaches R more completely as a comprehensive tool for scientific computing and graphing.

**Author**: Joseph Adler

**Publisher:** O'Reilly Germany

**ISBN:** 3897216507

**Category:** Computers

**Page:** 768

**View:** 6180

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

**Author**: Andrie de Vries,Joris Meys

**Publisher:** John Wiley & Sons

**ISBN:** 3527812520

**Category:** Computers

**Page:** 414

**View:** 9890

Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.

**Author**: Robert H. Schleicher

**Publisher:** N.A

**ISBN:** 9781610605397

**Category:**

**Page:** N.A

**View:** 3440

**Author**: Joseph Smith

**Publisher:** Рипол Классик

**ISBN:** 5883931774

**Category:** History

**Page:** N.A

**View:** 4767

*Fundamentals of Programming and Statistical Analysis*

**Author**: Pierre Lafaye de Micheaux,Rémy Drouilhet,Benoit Liquet

**Publisher:** Springer Science & Business

**ISBN:** 1461490200

**Category:** Computers

**Page:** 628

**View:** 2902

The contents of The R Software are presented so as to be both comprehensive and easy for the reader to use. Besides its application as a self-learning text, this book can support lectures on R at any level from beginner to advanced. This book can serve as a textbook on R for beginners as well as more advanced users, working on Windows, MacOs or Linux OSes. The first part of the book deals with the heart of the R language and its fundamental concepts, including data organization, import and export, various manipulations, documentation, plots, programming and maintenance. The last chapter in this part deals with oriented object programming as well as interfacing R with C/C++ or Fortran, and contains a section on debugging techniques. This is followed by the second part of the book, which provides detailed explanations on how to perform many standard statistical analyses, mainly in the Biostatistics field. Topics from mathematical and statistical settings that are included are matrix operations, integration, optimization, descriptive statistics, simulations, confidence intervals and hypothesis testing, simple and multiple linear regression, and analysis of variance. Each statistical chapter in the second part relies on one or more real biomedical data sets, kindly made available by the Bordeaux School of Public Health (Institut de Santé Publique, d'Épidémiologie et de Développement - ISPED) and described at the beginning of the book. Each chapter ends with an assessment section: memorandum of most important terms, followed by a section of theoretical exercises (to be done on paper), which can be used as questions for a test. Moreover, worksheets enable the reader to check his new abilities in R. Solutions to all exercises and worksheets are included in this book.

**Author**: Patrick Weldon

**Publisher:** BookRix

**ISBN:** 3739653175

**Category:** Computers

**Page:** 123

**View:** 9790

This updated and expanded second edition of Book provides a user-friendly introduction to the subject, Taking a clear structural framework, it guides the reader through the subject's core elements. A flowing writing style combines with the use of illustrations and diagrams throughout the text to ensure the reader understands even the most complex of concepts. This succinct and enlightening overview is a required reading for all those interested in the subject . We hope you find this book useful in shaping your future career & Business.

**Author**: Christopher Gandrud

**Publisher:** CRC Press

**ISBN:** 1498715389

**Category:** Business & Economics

**Page:** 323

**View:** 5376

All the Tools for Gathering and Analyzing Data and Presenting Results Reproducible Research with R and RStudio, Second Edition brings together the skills and tools needed for doing and presenting computational research. Using straightforward examples, the book takes you through an entire reproducible research workflow. This practical workflow enables you to gather and analyze data as well as dynamically present results in print and on the web. New to the Second Edition The rmarkdown package that allows you to create reproducible research documents in PDF, HTML, and Microsoft Word formats using the simple and intuitive Markdown syntax Improvements to RStudio’s interface and capabilities, such as its new tools for handling R Markdown documents Expanded knitr R code chunk capabilities The kable function in the knitr package and the texreg package for dynamically creating tables to present your data and statistical results An improved discussion of file organization, enabling you to take full advantage of relative file paths so that your documents are more easily reproducible across computers and systems The dplyr, magrittr, and tidyr packages for fast data manipulation Numerous modifications to R syntax in user-created packages Changes to GitHub’s and Dropbox’s interfaces Create Dynamic and Highly Reproducible Research This updated book provides all the tools to combine your research with the presentation of your findings. It saves you time searching for information so that you can spend more time actually addressing your research questions. Supplementary files used for the examples and a reproducible research project are available on the author’s website.
*Computational Statistics with R*

**Author**: N.A

**Publisher:** Elsevier

**ISBN:** 044463441X

**Category:** Mathematics

**Page:** 412

**View:** 3084

R is open source statistical computing software. Since the R core group was formed in 1997, R has been extended by a very large number of packages with extensive documentation along with examples freely available on the internet. It offers a large number of statistical and numerical methods and graphical tools and visualization of extraordinarily high quality. R was recently ranked in 14th place by the Transparent Language Popularity Index and 6th as a scripting language, after PHP, Python, and Perl. The book is designed so that it can be used right away by novices while appealing to experienced users as well. Each article begins with a data example that can be downloaded directly from the R website. Data analysis questions are articulated following the presentation of the data. The necessary R commands are spelled out and executed and the output is presented and discussed. Other examples of data sets with a different flavor and different set of commands but following the theme of the article are presented as well. Each chapter predents a hands-on-experience. R has superb graphical outlays and the book brings out the essentials in this arena. The end user can benefit immensely by applying the graphics to enhance research findings. The core statistical methodologies such as regression, survival analysis, and discrete data are all covered. Addresses data examples that can be downloaded directly from the R website No other source is needed to gain practical experience Focus on the essentials in graphical outlays
*Wie wir lernen, die Welt so zu sehen, wie sie wirklich ist*

**Author**: Hans Rosling,Anna Rosling Rönnlund,Ola Rosling

**Publisher:** Ullstein Buchverlage

**ISBN:** 3843717451

**Category:** Science

**Page:** 350

**View:** 5292

Es wird alles immer schlimmer, eine schreckliche Nachricht jagt die andere: Die Reichen werden reicher, die Armen ärmer. Es gibt immer mehr Kriege, Gewaltverbrechen, Naturkatastrophen. Viele Menschen tragen solche beängstigenden Bilder im Kopf. Doch sie liegen damit grundfalsch. Unser Gehirn verführt uns zu einer dramatisierenden Weltsicht, die mitnichten der Realität entspricht, wie der geniale Statistiker und Wissenschaftler Hans Rosling erklärt. Wer das Buch gelesen hat, wird • ein sicheres, auf Fakten basierendes Gerüst besitzen, um die Welt so zu sehen, wie sie wirklich ist • die zehn gängigsten Arten von aufgebauschten Geschichten erkennen • bessere Entscheidungen treffen können • wahre Factfulness erreichen – jene offene, neugierige und entspannte Geisteshaltung, in der Sie nur noch Ansichten teilen und Urteile fällen, die auf soliden Fakten basieren
*Data Management, Statistical Analysis, and Graphics, Second Edition*

**Author**: Ken Kleinman,Nicholas J. Horton

**Publisher:** CRC Press

**ISBN:** 1466584491

**Category:** Mathematics

**Page:** 468

**View:** 827

An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website.
*Excerpts from the R Cookbook*

**Author**: Paul Teetor

**Publisher:** "O'Reilly Media, Inc."

**ISBN:** 1449303862

**Category:** Computers

**Page:** 62

**View:** 982

R is a powerful tool for statistics and graphics, but getting started with this language can be frustrating. This short, concise book provides beginners with a selection of how-to recipes to solve simple problems with R. Each solution gives you just what you need to know to use R for basic statistics, graphics, and regression. You'll find recipes on reading data files, creating data frames, computing basic statistics, testing means and correlations, creating a scatter plot, performing simple linear regression, and many more. These solutions were selected from O'Reilly's R Cookbook, which contains more than 200 recipes for R that you'll find useful once you move beyond the basics.

**Author**: John Fox,Sanford Weisberg

**Publisher:** SAGE Publications

**ISBN:** 141297514X

**Category:** Social Science

**Page:** 449

**View:** 2353

This book aims to provide a broad introduction to the R statistical environment in the context of applied regression analysis, which is typically studied by social scientists and others in a second course in applied statistics.

**Author**: Maria L. Rizzo

**Publisher:** CRC Press

**ISBN:** 1584885459

**Category:** Mathematics

**Page:** 416

**View:** 2711

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. Suitable for an introductory course in computational statistics or for self-study, it includes R code for all examples and R notes to help explain the R programming concepts. After an overview of computational statistics and an introduction to the R computing environment, the book reviews some basic concepts in probability and classical statistical inference. Each subsequent chapter explores a specific topic in computational statistics. These chapters cover the simulation of random variables from probability distributions, the visualization of multivariate data, Monte Carlo integration and variance reduction methods, Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. The final chapter presents a selection of examples that illustrate the application of numerical methods using R functions. Focusing on implementation rather than theory, this text serves as a balanced, accessible introduction to computational statistics and statistical computing.

**Author**: Emmanuel Paradis

**Publisher:** Springer Science & Business Media

**ISBN:** 1461417430

**Category:** Science

**Page:** 386

**View:** 2181

The increasing availability of molecular and genetic databases coupled with the growing power of computers gives biologists opportunities to address new issues, such as the patterns of molecular evolution, and re-assess old ones, such as the role of adaptation in species diversification. In the second edition, the book continues to integrate a wide variety of data analysis methods into a single and flexible interface: the R language. This open source language is available for a wide range of computer systems and has been adopted as a computational environment by many authors of statistical software. Adopting R as a main tool for phylogenetic analyses will ease the workflow in biologists' data analyses, ensure greater scientific repeatability, and enhance the exchange of ideas and methodological developments. The second edition is completed updated, covering the full gamut of R packages for this area that have been introduced to the market since its previous publication five years ago. There is also a new chapter on the simulation of evolutionary data. Graduate students and researchers in evolutionary biology can use this book as a reference for data analyses, whereas researchers in bioinformatics interested in evolutionary analyses will learn how to implement these methods in R. The book starts with a presentation of different R packages and gives a short introduction to R for phylogeneticists unfamiliar with this language. The basic phylogenetic topics are covered: manipulation of phylogenetic data, phylogeny estimation, tree drawing, phylogenetic comparative methods, and estimation of ancestral characters. The chapter on tree drawing uses R's powerful graphical environment. A section deals with the analysis of diversification with phylogenies, one of the author's favorite research topics. The last chapter is devoted to the development of phylogenetic methods with R and interfaces with other languages (C and C++). Some exercises conclude these chapters.

Full PDF Download Free

Privacy Policy

Copyright © 2019 Download PDF Site — Primer WordPress theme by GoDaddy