The Book of R

A First Course in Programming and Statistics
Author: Tilman M. Davies
Publisher: No Starch Press
ISBN: 1593276516
Category: Computers
Page: 832
View: 9620

Continue Reading →

The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: *The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops *Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R *How to access R’s thousands of functions, libraries, and data sets *How to draw valid and useful conclusions from your data *How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.

R für Dummies


Author: Andrie de Vries,Joris Meys
Publisher: John Wiley & Sons
ISBN: 3527812520
Category: Computers
Page: 414
View: 9711

Continue Reading →

Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.

R in a Nutshell


Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 3897216507
Category: Computers
Page: 768
View: 2740

Continue Reading →

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger
Author: Al Sweigart
Publisher: dpunkt.verlag
ISBN: 3864919932
Category: Computers
Page: 576
View: 2562

Continue Reading →

Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!

Programmieren mit R


Author: Uwe Ligges
Publisher: Springer-Verlag
ISBN: 3540799982
Category: Computers
Page: 251
View: 7046

Continue Reading →

R ist eine objektorientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik. Ausführlich führt der Autor in die Grundlagen ein und vermittelt eingängig die Struktur der Sprache. So ermöglicht er Lesern den leichten Einstieg: eigene Methoden umsetzen, Objektklassen definieren und Pakete aus Funktionen und zugehöriger Dokumentation zusammenstellen. Detailliert beschreibt er die enormen Grafikfähigkeiten von R. Für alle, die R als flexibles Werkzeug zur Datenanalyse und -visualisierung einsetzen. In 2. Auflage mit vielen Verbesserungen und Neuerungen von R-2.3.x und weiteren von Lesern gewünschten Ergänzungen.

Freakonomics

überraschende Antworten auf alltägliche Lebensfragen ; [warum wohnen Drogenhändler bei ihren Müttern? Führt mehr Polizei zu weniger Kriminalität? Sind Swimmingpools gefährlicher als Revolver? Macht gute Erziehung glücklich?]
Author: Steven D. Levitt,Stephen J. Dubner
Publisher: N.A
ISBN: 9783442154517
Category:
Page: 411
View: 3567

Continue Reading →

Sind Swimmingpools gefährlicher als Revolver? Warum betrügen Lehrer? Der preisgekrönte Wirtschaftswissenschaftler Steven D. Levitt kombiniert Statistiken, deren Zusammenführung und Gegenüberstellung auf den ersten Blick absurd erscheint, durch seine Analysetechnik aber zu zahlreichen Aha-Effekten führt. Ein äußerst unterhaltsamer Streifzug durch die Mysterien des Alltags, der uns schmunzeln lässt und stets über eindimensionales Denken hinausführt.

Statistik-Workshop für Programmierer


Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Category: Computers
Page: 160
View: 3093

Continue Reading →

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Elements of Statistical Computing

NUMERICAL COMPUTATION
Author: R.A. Thisted
Publisher: Routledge
ISBN: 1351452746
Category: Mathematics
Page: 448
View: 2282

Continue Reading →

Statistics and computing share many close relationships. Computing now permeates every aspect of statistics, from pure description to the development of statistical theory. At the same time, the computational methods used in statistical work span much of computer science. Elements of Statistical Computing covers the broad usage of computing in statistics. It provides a comprehensive account of the most important computational statistics. Included are discussions of numerical analysis, numerical integration, and smoothing. The author give special attention to floating point standards and numerical analysis; iterative methods for both linear and nonlinear equation, such as Gauss-Seidel method and successive over-relaxation; and computational methods for missing data, such as the EM algorithm. Also covered are new areas of interest, such as the Kalman filter, projection-pursuit methods, density estimation, and other computer-intensive techniques.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython
Author: Wes McKinney
Publisher: O'Reilly
ISBN: 3960102143
Category: Computers
Page: 542
View: 7474

Continue Reading →

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Machine Learning mit Python

Das Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning
Author: Sebastian Raschka
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3958454240
Category: Computers
Page: 424
View: 7902

Continue Reading →

The R Software

Fundamentals of Programming and Statistical Analysis
Author: Pierre Lafaye de Micheaux,Rémy Drouilhet,Benoit Liquet
Publisher: Springer Science & Business
ISBN: 1461490200
Category: Computers
Page: 628
View: 3147

Continue Reading →

The contents of The R Software are presented so as to be both comprehensive and easy for the reader to use. Besides its application as a self-learning text, this book can support lectures on R at any level from beginner to advanced. This book can serve as a textbook on R for beginners as well as more advanced users, working on Windows, MacOs or Linux OSes. The first part of the book deals with the heart of the R language and its fundamental concepts, including data organization, import and export, various manipulations, documentation, plots, programming and maintenance. The last chapter in this part deals with oriented object programming as well as interfacing R with C/C++ or Fortran, and contains a section on debugging techniques. This is followed by the second part of the book, which provides detailed explanations on how to perform many standard statistical analyses, mainly in the Biostatistics field. Topics from mathematical and statistical settings that are included are matrix operations, integration, optimization, descriptive statistics, simulations, confidence intervals and hypothesis testing, simple and multiple linear regression, and analysis of variance. Each statistical chapter in the second part relies on one or more real biomedical data sets, kindly made available by the Bordeaux School of Public Health (Institut de Santé Publique, d'Épidémiologie et de Développement - ISPED) and described at the beginning of the book. Each chapter ends with an assessment section: memorandum of most important terms, followed by a section of theoretical exercises (to be done on paper), which can be used as questions for a test. Moreover, worksheets enable the reader to check his new abilities in R. Solutions to all exercises and worksheets are included in this book.

Statistik für Dummies


Author: Deborah J. Rumsey
Publisher: John Wiley & Sons
ISBN: 3527692762
Category: Education
Page: 355
View: 4226

Continue Reading →

Von A wie Ausreißer bis Z wie Z-Verteilung Entdecken Sie mit Statistik für Dummies Ihren Spaß an der Statistik und werfen Sie einen Blick hinter die Kulissen dieser komplizierten, aber hilfreichen Wissenschaft! Deborah Rumsey zeigt Ihnen das nötige statistische Handwerkszeug wie Stichprobe, Wahrscheinlichkeit, Bias, Median, Durchschnitt und Korrelation. Sie lernen die verschiedenen grafischen Darstellungsmöglichkeiten von statistischem Material kennen und werden über die unterschiedlichen Methoden der Auswertung erstaunt sein. Schärfen Sie mit diesem Buch Ihr Bewusstsein für Zahlen und deren Interpretation, sodass Ihnen keiner mehr etwas vormachen kann!

Python kinderleicht!

Einfach programmieren lernen – nicht nur für Kids
Author: Jason Briggs
Publisher: dpunkt.verlag
ISBN: 3864919053
Category: Computers
Page: 326
View: 8144

Continue Reading →

Python ist eine leistungsfähige, moderne Programmiersprache. Sie ist einfach zu erlernen und macht Spaß in der Anwendung – mit diesem Buch umso mehr! »Python kinderleicht" macht die Sprache lebendig und zeigt Dir (und Deinen Eltern) die Welt der Programmierung. Jason R. Briggs führt Dich Schritt für Schritt durch die Grundlagen von Python. Du experimentierst mit einzigartigen (und oft urkomischen) Beispielprogrammen, bei denen es um gefräßige Monster, Geheimagenten oder diebische Raben geht. Neue Begriffe werden erklärt, der Programmcode ist farbig dargestellt, strukturiert und mit Erklärungen versehen. Witzige Abbildungen erhöhen den Lernspaß. Jedes Kapitel endet mit Programmier-Rätseln, an denen Du das Gelernte üben und Dein Verständnis vertiefen kannst. Am Ende des Buches wirst Du zwei komplette Spiele programmiert haben: einen Klon des berühmten »Pong" und »Herr Strichmann rennt zum Ausgang" – ein Plattformspiel mit Sprüngen, Animation und vielem mehr. Indem Du Seite für Seite neue Programmierabenteuer bestehst, wirst Du immer mehr zum erfahrenen Python-Programmierer. - Du lernst grundlegende Datenstrukturen wie Listen, Tupel und Maps kennen. - Du erfährst, wie man mit Funktionen und Modulen den Programmcode organisieren und wiederverwenden kann. - Du wirst mit Kontrollstrukturen wie Schleifen und bedingten Anweisungen vertraut und lernst, mit Objekten und Methoden umzugehen. - Du zeichnest Formen mit dem Python-Modul Turtle und erstellst Spiele, Animationen und andere grafische Wunder mit tkinter. Und: »Python kinderleicht" macht auch für Erwachsene das Programmierenlernen zum Kinderspiel! Alle Programme findest Du auch zum Herunterladen auf der Website!

Big Data

Die Revolution, die unser Leben verändern wird
Author: Viktor Mayer-Schönberger,Viktor; Cukier Mayer-Schönberger
Publisher: Redline Wirtschaft
ISBN: 3864144590
Category: Political Science
Page: 288
View: 9467

Continue Reading →

Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.

Lineare Algebra


Author: Gilbert Strang
Publisher: Springer-Verlag
ISBN: 3642556310
Category: Mathematics
Page: 656
View: 9590

Continue Reading →

Diese Einführung in die lineare Algebra bietet einen sehr anschaulichen Zugang zum Thema. Die englische Originalausgabe wurde rasch zum Standardwerk in den Anfängerkursen des Massachusetts Institute of Technology sowie in vielen anderen nordamerikanischen Universitäten. Auch hierzulande ist dieses Buch als Grundstudiumsvorlesung für alle Studenten hervorragend lesbar. Darüber hinaus gibt es neue Impulse in der Mathematikausbildung und folgt dem Trend hin zu Anwendungen und Interdisziplinarität. Inhaltlich umfasst das Werk die Grundkenntnisse und die wichtigsten Anwendungen der linearen Algebra und eignet sich hervorragend für Studierende der Ingenieurwissenschaften, Naturwissenschaften, Mathematik und Informatik, die einen modernen Zugang zum Einsatz der linearen Algebra suchen. Ganz klar liegt hierbei der Schwerpunkt auf den Anwendungen, ohne dabei die mathematische Strenge zu vernachlässigen. Im Buch wird die jeweils zugrundeliegende Theorie mit zahlreichen Beispielen aus der Elektrotechnik, der Informatik, der Physik, Biologie und den Wirtschaftswissenschaften direkt verknüpft. Zahlreiche Aufgaben mit Lösungen runden das Werk ab.

Zeitreihenmodelle


Author: Andrew C. Harvey
Publisher: De Gruyter Oldenbourg
ISBN: 9783486230062
Category:
Page: 379
View: 5644

Continue Reading →

Gegenstand des Werkes sind Analyse und Modellierung von Zeitreihen. Es wendet sich an Studierende und Praktiker aller Disziplinen, in denen Zeitreihenbeobachtungen wichtig sind.

SPSS 16

Einführung in die moderne Datenanalyse
Author: Achim Bühl
Publisher: Pearson Deutschland GmbH
ISBN: 9783827373328
Category: SPSS (Computer system)
Page: 888
View: 646

Continue Reading →

Die Standardeinführung für SPSS ist auf der Basis zahlreicher neuer Datensätze für die Version 16 vollständig überarbeitet und erweitert worden. Ausgehend von Problemstellungen aus der Praxis wird gezeigt, wie Sie mit SPSS arbeiten können. Die Beispiele basieren meist auf Fallstudien und sind vor allem dem sozialwissenschaftlichen und dem psychologisch-medizinischen Bereich entnommen. Der Autor beschreibt ausführlich den kompletten statistischen Inhalt der Module Base, Regression Models und Advanced Models. In der 11. Auflage des Werks nimmt erstmals auch die Korrespondenzanalyse einen breiten Raum ein; ein Verfahren, das immer häufiger eingesetzt wird und Zusammenhänge von Variablen optisch als Punkte eines geometrischen Raums aufbereitet.

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn
Author: Jake VanderPlas
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3958456979
Category: Computers
Page: 552
View: 4870

Continue Reading →

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

Einführung in die Bayes-Statistik


Author: Karl-Rudolf Koch
Publisher: Springer-Verlag
ISBN: 3642569706
Category: Science
Page: 225
View: 9264

Continue Reading →

Das Buch führt auf einfache und verständliche Weise in die Bayes-Statistik ein. Ausgehend vom Bayes-Theorem werden die Schätzung unbekannter Parameter, die Festlegung von Konfidenzregionen für die unbekannten Parameter und die Prüfung von Hypothesen für die Parameter abgeleitet. Angewendet werden die Verfahren für die Parameterschätzung im linearen Modell, für die Parameterschätzung, die sich robust gegenüber Ausreißern in den Beobachtungen verhält, für die Prädiktion und Filterung, die Varianz- und Kovarianzkomponentenschätzung und die Mustererkennung. Für Entscheidungen in Systemen mit Unsicherheiten dienen Bayes-Netze. Lassen sich notwendige Integrale analytisch nicht lösen, werden numerische Verfahren mit Hilfe von Zufallswerten eingesetzt.