C++ für Dummies


Author: Stephen R. Davis,Judith Muhr
Publisher: John Wiley & Sons
ISBN: 3527708340
Category: Computers
Page: 395
View: 8343

Continue Reading →

Die Programmierung mit C++ muss nicht schwer sein. Mit diesem Buch werden Sie schon ab dem ersten Kapitel eigene Programme schreiben und die C++-Syntax von der Pike auf lernen, verstehen und anwenden. Anhand zahlreicher "Programmschnipsel" erklärt Ihnen Stephen Randy Davis, wie Sie Code zu Modulen zusammenfassen, die Sie immer wieder verwenden können und schon bald werden Ihnen auch Konzepte wie Zeiger, Vererbung oder Klassen kein Rätsel mehr sein.

The Art of R Programming

A Tour of Statistical Software Design
Author: Norman Matloff
Publisher: No Starch Press
ISBN: 1593274106
Category: Computers
Page: 400
View: 5404

Continue Reading →

R is the world's most popular language for developing statistical software: Archaeologists use it to track the spread of ancient civilizations, drug companies use it to discover which medications are safe and effective, and actuaries use it to assess financial risks and keep economies running smoothly. The Art of R Programming takes you on a guided tour of software development with R, from basic types and data structures to advanced topics like closures, recursion, and anonymous functions. No statistical knowledge is required, and your programming skills can range from hobbyist to pro. Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: –Create artful graphs to visualize complex data sets and functions –Write more efficient code using parallel R and vectorization –Interface R with C/C++ and Python for increased speed or functionality –Find new R packages for text analysis, image manipulation, and more –Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.

R für Dummies


Author: Andrie de Vries,Joris Meys
Publisher: John Wiley & Sons
ISBN: 3527812520
Category: Computers
Page: 414
View: 9252

Continue Reading →

Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.

R in a Nutshell


Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 3897216507
Category: Computers
Page: 768
View: 1058

Continue Reading →

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Visualize This!


Author: Nathan Yau
Publisher: John Wiley & Sons
ISBN: 3527760229
Category: Statistics / Graphic methods / Data processing
Page: 422
View: 5673

Continue Reading →

A guide on how to visualise and tell stories with data, providing practical design tips complemented with step-by-step tutorials.

Python kinderleicht!

Einfach programmieren lernen – nicht nur für Kids
Author: Jason Briggs
Publisher: dpunkt.verlag
ISBN: 3864919053
Category: Computers
Page: 326
View: 2714

Continue Reading →

Python ist eine leistungsfähige, moderne Programmiersprache. Sie ist einfach zu erlernen und macht Spaß in der Anwendung – mit diesem Buch umso mehr! »Python kinderleicht" macht die Sprache lebendig und zeigt Dir (und Deinen Eltern) die Welt der Programmierung. Jason R. Briggs führt Dich Schritt für Schritt durch die Grundlagen von Python. Du experimentierst mit einzigartigen (und oft urkomischen) Beispielprogrammen, bei denen es um gefräßige Monster, Geheimagenten oder diebische Raben geht. Neue Begriffe werden erklärt, der Programmcode ist farbig dargestellt, strukturiert und mit Erklärungen versehen. Witzige Abbildungen erhöhen den Lernspaß. Jedes Kapitel endet mit Programmier-Rätseln, an denen Du das Gelernte üben und Dein Verständnis vertiefen kannst. Am Ende des Buches wirst Du zwei komplette Spiele programmiert haben: einen Klon des berühmten »Pong" und »Herr Strichmann rennt zum Ausgang" – ein Plattformspiel mit Sprüngen, Animation und vielem mehr. Indem Du Seite für Seite neue Programmierabenteuer bestehst, wirst Du immer mehr zum erfahrenen Python-Programmierer. - Du lernst grundlegende Datenstrukturen wie Listen, Tupel und Maps kennen. - Du erfährst, wie man mit Funktionen und Modulen den Programmcode organisieren und wiederverwenden kann. - Du wirst mit Kontrollstrukturen wie Schleifen und bedingten Anweisungen vertraut und lernst, mit Objekten und Methoden umzugehen. - Du zeichnest Formen mit dem Python-Modul Turtle und erstellst Spiele, Animationen und andere grafische Wunder mit tkinter. Und: »Python kinderleicht" macht auch für Erwachsene das Programmierenlernen zum Kinderspiel! Alle Programme findest Du auch zum Herunterladen auf der Website!

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger
Author: Al Sweigart
Publisher: dpunkt.verlag
ISBN: 3864919932
Category: Computers
Page: 576
View: 5305

Continue Reading →

Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!

Mehr Hacking mit Python

Eigene Tools entwickeln für Hacker und Pentester
Author: Justin Seitz
Publisher: dpunkt.verlag
ISBN: 3864917530
Category: Computers
Page: 182
View: 2159

Continue Reading →

Wenn es um die Entwicklung leistungsfähiger und effizienter Hacking-Tools geht, ist Python für die meisten Sicherheitsanalytiker die Sprache der Wahl. Doch wie genau funktioniert das? In dem neuesten Buch von Justin Seitz - dem Autor des Bestsellers »Hacking mit Python« - entdecken Sie Pythons dunkle Seite. Sie entwickeln Netzwerk-Sniffer, manipulieren Pakete, infizieren virtuelle Maschinen, schaffen unsichtbare Trojaner und vieles mehr. Sie lernen praktisch, wie man • einen »Command-and-Control«-Trojaner mittels GitHub schafft • Sandboxing erkennt und gängige Malware-Aufgaben wie Keylogging und Screenshotting automatisiert • Windows-Rechte mittels kreativer Prozesskontrolle ausweitet • offensive Speicherforensik-Tricks nutzt, um Passwort-Hashes abzugreifen und Shellcode in virtuelle Maschinen einzuspeisen • das beliebte Web-Hacking-Tool Burp erweitert • die Windows COM-Automatisierung nutzt, um einen Man-in-the-Middle-Angriff durchzuführen • möglichst unbemerkt Daten aus einem Netzwerk abgreift Eine Reihe von Insider-Techniken und kreativen Aufgaben zeigen Ihnen, wie Sie die Hacks erweitern und eigene Exploits entwickeln können.

Using R for Numerical Analysis in Science and Engineering


Author: Victor A. Bloomfield
Publisher: CRC Press
ISBN: 1315360497
Category: Mathematics
Page: 359
View: 6009

Continue Reading →

Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.

Der Turing Omnibus

Eine Reise durch die Informatik mit 66 Stationen
Author: A.K. Dewdney
Publisher: Springer-Verlag
ISBN: 3642788726
Category: Computers
Page: 496
View: 9725

Continue Reading →

Der Turing Omnibus macht in 66 exzellent geschriebenen Beiträgen Station bei den interessantesten Themen aus der Informatik, der Computertechnologie und ihren Anwendungen.

Die Kunst der JavaScript-Programmierung

Eine moderne Einführung in die Sprache des Web
Author: Marijn Haverbeke
Publisher: dpunkt.verlag
ISBN: 3864911915
Category: Computers
Page: 240
View: 9099

Continue Reading →

Das Buch ist eine Einführung in JavaScript, die sich auf gute Programmiertechniken konzentriert. Der Autor lehrt den Leser, wie man die Eleganz und Präzision von JavaScript nutzt, um browserbasierte Anwendungen zu schreiben. Das Buch beginnt mit den Grundlagen der Programmierung - Variablen, Kontrollstrukturen, Funktionen und Datenstrukturen -, dann geht es auf komplexere Themen ein, wie die funktionale und objektorientierte Programmierung, reguläre Ausdrücke und Browser-Events. Unterstützt von verständlichen Beispielen wird der Leser rasch die Sprache des Web fließend 'sprechen' können.

The Book of R

A First Course in Programming and Statistics
Author: Tilman M. Davies
Publisher: No Starch Press
ISBN: 1593277792
Category: Computers
Page: 832
View: 8588

Continue Reading →

The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.

Einführung in die Statistik


Author: Jürgen Lehn,Helmut Wegmann
Publisher: Springer-Verlag
ISBN: 3322917851
Category: Mathematics
Page: 206
View: 4157

Continue Reading →

Eine elementare Darstellung statistischer Schätz- und Testverfahren einschließlich der zugrundeliegenden Modellbildung für Mathematiker, Informatiker, Wirtschaftswissenschaftler, Naturwissenschaftler und Ingenieure

An Introduction To High Content Screening

Imaging Technology, Assay Development, and Data Analysis in Biology and Drug Discovery
Author: Steven A. Haney,Douglas Bowman,Arijit Chakravarty,Anthony Davies,Caroline Shamu
Publisher: John Wiley & Sons
ISBN: 0470624566
Category: Science
Page: 360
View: 1034

Continue Reading →

Using a collaborative and interdisciplinary author base with experience in the pharmaceutical industry and academia, this book is a practical resource for high content (HC) techniques. Instructs readers on the fundamentals of high content screening (HCS) techniques Focuses on practical and widely–used techniques like image processing and multiparametric assays Breaks down HCS into individual modules for training and connects them at the end Includes a tutorial chapter that works through sample HCS assays, glossary, and detailed appendices

Data Mining Algorithms

Explained Using R
Author: Pawel Cichosz
Publisher: John Wiley & Sons
ISBN: 1118950801
Category: Mathematics
Page: 720
View: 3119

Continue Reading →

Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.

Clean Code - Refactoring, Patterns, Testen und Techniken für sauberen Code

Deutsche Ausgabe
Author: Robert C. Martin
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3826696387
Category: Computers
Page: 480
View: 8857

Continue Reading →

h2> Kommentare, Formatierung, Strukturierung Fehler-Handling und Unit-Tests Zahlreiche Fallstudien, Best Practices, Heuristiken und Code Smells Clean Code - Refactoring, Patterns, Testen und Techniken für sauberen Code Aus dem Inhalt: Lernen Sie, guten Code von schlechtem zu unterscheiden Sauberen Code schreiben und schlechten Code in guten umwandeln Aussagekräftige Namen sowie gute Funktionen, Objekte und Klassen erstellen Code so formatieren, strukturieren und kommentieren, dass er bestmöglich lesbar ist Ein vollständiges Fehler-Handling implementieren, ohne die Logik des Codes zu verschleiern Unit-Tests schreiben und Ihren Code testgesteuert entwickeln Selbst schlechter Code kann funktionieren. Aber wenn der Code nicht sauber ist, kann er ein Entwicklungsunternehmen in die Knie zwingen. Jedes Jahr gehen unzählige Stunden und beträchtliche Ressourcen verloren, weil Code schlecht geschrieben ist. Aber das muss nicht sein. Mit Clean Code präsentiert Ihnen der bekannte Software-Experte Robert C. Martin ein revolutionäres Paradigma, mit dem er Ihnen aufzeigt, wie Sie guten Code schreiben und schlechten Code überarbeiten. Zusammen mit seinen Kollegen von Object Mentor destilliert er die besten Praktiken der agilen Entwicklung von sauberem Code zu einem einzigartigen Buch. So können Sie sich die Erfahrungswerte der Meister der Software-Entwicklung aneignen, die aus Ihnen einen besseren Programmierer machen werden – anhand konkreter Fallstudien, die im Buch detailliert durchgearbeitet werden. Sie werden in diesem Buch sehr viel Code lesen. Und Sie werden aufgefordert, darüber nachzudenken, was an diesem Code richtig und falsch ist. Noch wichtiger: Sie werden herausgefordert, Ihre professionellen Werte und Ihre Einstellung zu Ihrem Beruf zu überprüfen. Clean Code besteht aus drei Teilen:Der erste Teil beschreibt die Prinzipien, Patterns und Techniken, die zum Schreiben von sauberem Code benötigt werden. Der zweite Teil besteht aus mehreren, zunehmend komplexeren Fallstudien. An jeder Fallstudie wird aufgezeigt, wie Code gesäubert wird – wie eine mit Problemen behaftete Code-Basis in eine solide und effiziente Form umgewandelt wird. Der dritte Teil enthält den Ertrag und den Lohn der praktischen Arbeit: ein umfangreiches Kapitel mit Best Practices, Heuristiken und Code Smells, die bei der Erstellung der Fallstudien zusammengetragen wurden. Das Ergebnis ist eine Wissensbasis, die beschreibt, wie wir denken, wenn wir Code schreiben, lesen und säubern. Dieses Buch ist ein Muss für alle Entwickler, Software-Ingenieure, Projektmanager, Team-Leiter oder Systemanalytiker, die daran interessiert sind, besseren Code zu produzieren. Über den Autor: Robert C. »Uncle Bob« Martin entwickelt seit 1970 professionell Software. Seit 1990 arbeitet er international als Software-Berater. Er ist Gründer und Vorsitzender von Object Mentor, Inc., einem Team erfahrener Berater, die Kunden auf der ganzen Welt bei der Programmierung in und mit C++, Java, C#, Ruby, OO, Design Patterns, UML sowie Agilen Methoden und eXtreme Programming helfen.

Implementation Patterns

Der Weg zu einfacherer und kostengünstigerer Programmierung
Author: Kent Beck
Publisher: Pearson Deutschland GmbH
ISBN: 9783827326447
Category:
Page: 191
View: 8626

Continue Reading →

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython
Author: Wes McKinney
Publisher: O'Reilly
ISBN: 3960102143
Category: Computers
Page: 542
View: 2263

Continue Reading →

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn
Author: Jake VanderPlas
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3958456979
Category: Computers
Page: 552
View: 336

Continue Reading →

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts