Text Data Management and Analysis

A Practical Introduction to Information Retrieval and Text Mining
Author: ChengXiang Zhai,Sean Massung
Publisher: Morgan & Claypool
ISBN: 1970001178
Category: Computers
Page: 530
View: 1425

Continue Reading →

Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people analyze and manage vast amounts of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans, and are accompanied by semantically rich content. As such, text data are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. In contrast to structured data, which conform to well-defined schemas (thus are relatively easy for computers to handle), text has less explicit structure, requiring computer processing toward understanding of the content encoded in text. The current technology of natural language processing has not yet reached a point to enable a computer to precisely understand natural language text, but a wide range of statistical and heuristic approaches to analysis and management of text data have been developed over the past few decades. They are usually very robust and can be applied to analyze and manage text data in any natural language, and about any topic. This book provides a systematic introduction to all these approaches, with an emphasis on covering the most useful knowledge and skills required to build a variety of practically useful text information systems. The focus is on text mining applications that can help users analyze patterns in text data to extract and reveal useful knowledge. Information retrieval systems, including search engines and recommender systems, are also covered as supporting technology for text mining applications. The book covers the major concepts, techniques, and ideas in text data mining and information retrieval from a practical viewpoint, and includes many hands-on exercises designed with a companion software toolkit (i.e., MeTA) to help readers learn how to apply techniques of text mining and information retrieval to real-world text data and how to experiment with and improve some of the algorithms for interesting application tasks. The book can be used as a textbook for a computer science undergraduate course or a reference book for practitioners working on relevant problems in analyzing and managing text data.

Strafgesetzbuch - StGB 2016


Author: Deutschland
Publisher: "Издательство ""Проспект"""
ISBN: 5392033458
Category: Law
Page: 164
View: 9518

Continue Reading →

Ausfertigungsdatum: 15.05.1871 Vollzitat: "Strafgesetzbuch in der Fassung der Bekanntmachung vom 13. November 1998 (BGBl. I S. 3322), das durch Artikel 1 des Gesetzes vom 24. September 2013 (BGBl. I S. 3671) geändert worden ist" Stand: Neugefasst durch Bek. v. 13.11.1998 I 3322; Zuletzt geändert durch Art. 23 G v. 20.11.2015 I 2010 Hinweis: Änderung durch Art. 1 G v. 20.11.2015 I 2025 (Nr. 46) noch nicht berücksichtigt!

An Architecture for Fast and General Data Processing on Large Clusters


Author: Matei Zaharia
Publisher: Morgan & Claypool
ISBN: 1970001577
Category: Computers
Page: 141
View: 3286

Continue Reading →

The past few years have seen a major change in computing systems, as growing data volumes and stalling processor speeds require more and more applications to scale out to clusters. Today, a myriad data sources, from the Internet to business operations to scientific instruments, produce large and valuable data streams. However, the processing capabilities of single machines have not kept up with the size of data. As a result, organizations increasingly need to scale out their computations over clusters. At the same time, the speed and sophistication required of data processing have grown. In addition to simple queries, complex algorithms like machine learning and graph analysis are becoming common. And in addition to batch processing, streaming analysis of real-time data is required to let organizations take timely action. Future computing platforms will need to not only scale out traditional workloads, but support these new applications too. This book, a revised version of the 2014 ACM Dissertation Award winning dissertation, proposes an architecture for cluster computing systems that can tackle emerging data processing workloads at scale. Whereas early cluster computing systems, like MapReduce, handled batch processing, our architecture also enables streaming and interactive queries, while keeping MapReduce's scalability and fault tolerance. And whereas most deployed systems only support simple one-pass computations (e.g., SQL queries), ours also extends to the multi-pass algorithms required for complex analytics like machine learning. Finally, unlike the specialized systems proposed for some of these workloads, our architecture allows these computations to be combined, enabling rich new applications that intermix, for example, streaming and batch processing. We achieve these results through a simple extension to MapReduce that adds primitives for data sharing, called Resilient Distributed Datasets (RDDs). We show that this is enough to capture a wide range of workloads. We implement RDDs in the open source Spark system, which we evaluate using synthetic and real workloads. Spark matches or exceeds the performance of specialized systems in many domains, while offering stronger fault tolerance properties and allowing these workloads to be combined. Finally, we examine the generality of RDDs from both a theoretical modeling perspective and a systems perspective. This version of the dissertation makes corrections throughout the text and adds a new section on the evolution of Apache Spark in industry since 2014. In addition, editing, formatting, and links for the references have been added.

Shared-Memory Parallelism Can be Simple, Fast, and Scalable


Author: Julian Shun
Publisher: Morgan & Claypool
ISBN: 1970001895
Category: Computers
Page: 426
View: 1419

Continue Reading →

Parallelism is the key to achieving high performance in computing. However, writing efficient and scalable parallel programs is notoriously difficult, and often requires significant expertise. To address this challenge, it is crucial to provide programmers with high-level tools to enable them to develop solutions easily, and at the same time emphasize the theoretical and practical aspects of algorithm design to allow the solutions developed to run efficiently under many different settings. This thesis addresses this challenge using a three-pronged approach consisting of the design of shared-memory programming techniques, frameworks, and algorithms for important problems in computing. The thesis provides evidence that with appropriate programming techniques, frameworks, and algorithms, shared-memory programs can be simple, fast, and scalable, both in theory and in practice. The results developed in this thesis serve to ease the transition into the multicore era. The first part of this thesis introduces tools and techniques for deterministic parallel programming, including means for encapsulating nondeterminism via powerful commutative building blocks, as well as a novel framework for executing sequential iterative loops in parallel, which lead to deterministic parallel algorithms that are efficient both in theory and in practice. The second part of this thesis introduces Ligra, the first high-level shared memory framework for parallel graph traversal algorithms. The framework allows programmers to express graph traversal algorithms using very short and concise code, delivers performance competitive with that of highly-optimized code, and is up to orders of magnitude faster than existing systems designed for distributed memory. This part of the thesis also introduces Ligra+, which extends Ligra with graph compression techniques to reduce space usage and improve parallel performance at the same time, and is also the first graph processing system to support in-memory graph compression. The third and fourth parts of this thesis bridge the gap between theory and practice in parallel algorithm design by introducing the first algorithms for a variety of important problems on graphs and strings that are efficient both in theory and in practice. For example, the thesis develops the first linear-work and polylogarithmic-depth algorithms for suffix tree construction and graph connectivity that are also practical, as well as a work-efficient, polylogarithmic-depth, and cache-efficient shared-memory algorithm for triangle computations that achieves a 2–5x speedup over the best existing algorithms on 40 cores. This is a revised version of the thesis that won the 2015 ACM Doctoral Dissertation Award.

Communities of Computing

Computer Science and Society in the ACM
Author: Thomas J. Misa
Publisher: Morgan & Claypool
ISBN: 1970001852
Category: Computers
Page: 422
View: 7901

Continue Reading →

Communities of Computing is the first book-length history of the Association for Computing Machinery (ACM), founded in 1947 and with a membership today of 100,000 worldwide. It profiles ACM's notable SIGs, active chapters, and individual members, setting ACM's history into a rich social and political context. The book's 12 core chapters are organized into three thematic sections. "Defining the Discipline" examines the 1960s and 1970s when the field of computer science was taking form at the National Science Foundation, Stanford University, and through ACM's notable efforts in education and curriculum standards. "Broadening the Profession" looks outward into the wider society as ACM engaged with social and political issues - and as members struggled with balancing a focus on scientific issues and awareness of the wider world. Chapters examine the social turbulence surrounding the Vietnam War, debates about the women's movement, efforts for computing and community education, and international issues including professionalization and the Cold War. "Expanding Research Frontiers" profiles three areas of research activity where ACM members and ACM itself shaped notable advances in computing, including computer graphics, computer security, and hypertext. Featuring insightful profiles of notable ACM leaders, such as Edmund Berkeley, George Forsythe, Jean Sammet, Peter Denning, and Kelly Gotlieb, and honest assessments of controversial episodes, the volume deals with compelling and complex issues involving ACM and computing. It is not a narrow organizational history of ACM committees and SIGS, although much information about them is given. All chapters are original works of research. Many chapters draw on archival records of ACM's headquarters, ACM SIGs, and ACM leaders. This volume makes a permanent contribution to documenting the history of ACM and understanding its central role in the history of computing.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen
Author: Ian H. Witten,Eibe Frank
Publisher: N.A
ISBN: 9783446215337
Category:
Page: 386
View: 7560

Continue Reading →

Compiler

Prinzipien, Techniken und Werkzeuge
Author: Alfred V. Aho
Publisher: Pearson Deutschland GmbH
ISBN: 9783827370976
Category: Compiler
Page: 1253
View: 689

Continue Reading →

Text Mining

Zur automatischen Wissensextraktion aus unstrukturierten Textdokumenten
Author: Bastian Buch
Publisher: N.A
ISBN: 9783836495509
Category:
Page: 112
View: 752

Continue Reading →

Data Mining

Practical Machine Learning Tools and Techniques, Second Edition
Author: Ian H. Witten,Eibe Frank
Publisher: Elsevier
ISBN: 9780080477022
Category: Computers
Page: 560
View: 6804

Continue Reading →

Data Mining, Second Edition, describes data mining techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights of this new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; and much more. This text is designed for information systems practitioners, programmers, consultants, developers, information technology managers, specification writers as well as professors and students of graduate-level data mining and machine learning courses. Algorithmic methods at the heart of successful data mining—including tried and true techniques as well as leading edge methods Performance improvement techniques that work by transforming the input or output

Managing Gigabytes

Compressing and Indexing Documents and Images
Author: Ian H. Witten,Alistair Moffat,Timothy C. Bell
Publisher: Morgan Kaufmann
ISBN: 9781558605701
Category: Business & Economics
Page: 519
View: 5191

Continue Reading →

In this fully updated second edition of the highly acclaimed Managing Gigabytes, authors Witten, Moffat, and Bell continue to provide unparalleled coverage of state-of-the-art techniques for compressing and indexing data. Whatever your field, if you work with large quantities of information, this book is essential reading--an authoritative theoretical resource and a practical guide to meeting the toughest storage and access challenges. It covers the latest developments in compression and indexing and their application on the Web and in digital libraries. It also details dozens of powerful techniques supported by mg, the authors' own system for compressing, storing, and retrieving text, images, and textual images. mg's source code is freely available on the Web. * Up-to-date coverage of new text compression algorithms such as block sorting, approximate arithmetic coding, and fat Huffman coding * New sections on content-based index compression and distributed querying, with 2 new data structures for fast indexing * New coverage of image coding, including descriptions of de facto standards in use on the Web (GIF and PNG), information on CALIC, the new proposed JPEG Lossless standard, and JBIG2 * New information on the Internet and WWW, digital libraries, web search engines, and agent-based retrieval * Accompanied by a public domain system called MG which is a fully worked-out operational example of the advanced techniques developed and explained in the book * New appendix on an existing digital library system that uses the MG software

Corporate Semantic Web

Wie semantische Anwendungen in Unternehmen Nutzen stiften
Author: Börteçin Ege,Bernhard Humm,Anatol Reibold
Publisher: Springer-Verlag
ISBN: 3642548865
Category: Computers
Page: 403
View: 8505

Continue Reading →

Corporate Semantic Web – hierbei geht es um semantische Anwendungen, deren Einsatz für Kunden und Mitarbeiter von Unternehmen konkret Nutzen stiftet. Die Autoren, namhafte Experten aus Industrie und Wissenschaft, berichten über ihre Erfahrungen bei der Entwicklung solcher Anwendungen. Sie gehen auf Software-Architektur, Methodik, Linked Open Data Sets, Lizenzfragen und Technologieauswahl ein und präsentieren auch eine Marktstudie. Vorgestellt werden Anwendungen für die Branchen Telekommunikation, Logistik, verarbeitende Industrie, Energie, Medizin, Tourismus, Bibliotheks- und Verlagswesen sowie Kultur. Der Leser erhält so einen umfassenden Überblick über die Einsatzbereiche des Semantic Web sowie konkrete Umsetzungshinweise für eigene Vorhaben.

R in a Nutshell


Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 3897216507
Category: Computers
Page: 768
View: 7500

Continue Reading →

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Ähnlichkeitssuche in Multimedia-Datenbanken

Retrieval, Suchalgorithmen und Anfragebehandlung
Author: Ingo Schmitt
Publisher: Oldenbourg Verlag
ISBN: 3486595040
Category: Computers
Page: 455
View: 4930

Continue Reading →

Mulitmedia-Datenbanksysteme dienen der effizienten Verwaltung von Medienobjekten. Spezielle Retrieval-Mechanismen helfen dabei, inhaltsbasierte Vergleiche von Medienobjekten durchzuführen. Mit diesen Multimedia-Retrievals beschäftigt sich Ingo Schmitt in diesem Buch. Diskutiert werden dazu die Feature-Aufbereitung sowie Ähnlichkeitsberechnung anhand von Distanz- und Ähnlichkeitsmaßen. Ein Kapitel über die Anfragebearbeitung in Multimedia-Datenbanksystemen rundet das Buch ab

Data mining, data warehousing

datenschutzrechtliche Orientierungshilfen für Privatunternehmen
Author: Alex Schweizer
Publisher: N.A
ISBN: 9783280025406
Category: Data mining
Page: 416
View: 8128

Continue Reading →

Private Unternehmung.

CIKM 2003

proceedings of the Twelfth ACM International Conference on Information & Knowledge Management : November 3-8, 2003, New Orleans, Louisiana, USA
Author: Association for Computing Machinery
Publisher: N.A
ISBN: 9781581137231
Category: Database management
Page: 578
View: 7687

Continue Reading →

Moving Objects Databases


Author: Ralf Hartmut Güting,Markus Schneider
Publisher: Academic Press
ISBN: 0120887991
Category: Computers
Page: 389
View: 429

Continue Reading →

First uniform treatment of moving objects databases, the technology that supports GPS and RFID data analysis.

big data @ work

Chancen erkennen, Risiken verstehen
Author: Thomas H. Davenport
Publisher: Vahlen
ISBN: 3800648156
Category: Fiction
Page: 214
View: 7219

Continue Reading →

Big Data in Unternehmen. Dieses neue Buch gibt Managern ein umfassendes Verständnis dafür, welche Bedeutung Big Data für Unternehmen zukünftig haben wird und wie Big Data tatsächlich genutzt werden kann. Am Ende jedes Kapitels aktivieren Fragen, selbst nach Lösungen für eine erfolgreiche Implementierung und Nutzung von Big Data im eigenen Unternehmen zu suchen. Die Schwerpunkte - Warum Big Data für Sie und Ihr Unternehmen wichtig ist - Wie Big Data Ihre Arbeit, Ihr Unternehmen und Ihre Branche verändern - - wird - Entwicklung einer Big Data-Strategie - Der menschliche Aspekt von Big Data - Technologien für Big Data - Wie Sie erfolgreich mit Big Data arbeiten - Was Sie von Start-ups und Online-Unternehmen lernen können - Was Sie von großen Unternehmen lernen können: Big Data und Analytics 3.0 Der Experte Thomas H. Davenport ist Professor für Informationstechnologie und -management am Babson College und Forschungswissenschaftler am MIT Center for Digital Business. Zudem ist er Mitbegründer und Forschungsdirektor am International Institute for Analytics und Senior Berater von Deloitte Analytics.