Stochastic Processes

Theory for Applications
Author: Robert G. Gallager
Publisher: Cambridge University Press
ISBN: 1107435315
Category: Technology & Engineering
Page: 568
View: 8515

Continue Reading →

This definitive textbook provides a solid introduction to discrete and continuous stochastic processes, tackling a complex field in a way that instils a deep understanding of the relevant mathematical principles, and develops an intuitive grasp of the way these principles can be applied to modelling real-world systems. It includes a careful review of elementary probability and detailed coverage of Poisson, Gaussian and Markov processes with richly varied queuing applications. The theory and applications of inference, hypothesis testing, estimation, random walks, large deviations, martingales and investments are developed. Written by one of the world's leading information theorists, evolving over twenty years of graduate classroom teaching and enriched by over 300 exercises, this is an exceptional resource for anyone looking to develop their understanding of stochastic processes.

Stochastic Processes

Theory for Applications
Author: Robert G. Gallager
Publisher: Cambridge University Press
ISBN: 1107039754
Category: Business & Economics
Page: 553
View: 7925

Continue Reading →

The definitive textbook on stochastic processes, written by one of the world's leading information theorists, covering both theory and applications.

Discrete Stochastic Processes


Author: Robert G. Gallager
Publisher: Springer Science & Business Media
ISBN: 146152329X
Category: Technology & Engineering
Page: 271
View: 2799

Continue Reading →

Stochastic processes are found in probabilistic systems that evolve with time. Discrete stochastic processes change by only integer time steps (for some time scale), or are characterized by discrete occurrences at arbitrary times. Discrete Stochastic Processes helps the reader develop the understanding and intuition necessary to apply stochastic process theory in engineering, science and operations research. The book approaches the subject via many simple examples which build insight into the structure of stochastic processes and the general effect of these phenomena in real systems. The book presents mathematical ideas without recourse to measure theory, using only minimal mathematical analysis. In the proofs and explanations, clarity is favored over formal rigor, and simplicity over generality. Numerous examples are given to show how results fail to hold when all the conditions are not satisfied. Audience: An excellent textbook for a graduate level course in engineering and operations research. Also an invaluable reference for all those requiring a deeper understanding of the subject.

Stationary Stochastic Processes

Theory and Applications
Author: Georg Lindgren
Publisher: CRC Press
ISBN: 1466557796
Category: Mathematics
Page: 375
View: 2628

Continue Reading →

Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.

Stochastic Processes


Author: Richard F. Bass
Publisher: Cambridge University Press
ISBN: 113950147X
Category: Mathematics
Page: N.A
View: 5757

Continue Reading →

This comprehensive guide to stochastic processes gives a complete overview of the theory and addresses the most important applications. Pitched at a level accessible to beginning graduate students and researchers from applied disciplines, it is both a course book and a rich resource for individual readers. Subjects covered include Brownian motion, stochastic calculus, stochastic differential equations, Markov processes, weak convergence of processes and semigroup theory. Applications include the Black–Scholes formula for the pricing of derivatives in financial mathematics, the Kalman–Bucy filter used in the US space program and also theoretical applications to partial differential equations and analysis. Short, readable chapters aim for clarity rather than full generality. More than 350 exercises are included to help readers put their new-found knowledge to the test and to prepare them for tackling the research literature.

Introduction to Stochastic Processes


Author: Erhan Cinlar
Publisher: Courier Corporation
ISBN: 0486276325
Category: Mathematics
Page: 416
View: 9112

Continue Reading →

Clear presentation employs methods that recognize computer-related aspects of theory. Topics include expectations and independence, Bernoulli processes and sums of independent random variables, Markov chains, renewal theory, more. 1975 edition.

Adventures in Stochastic Processes


Author: Sidney I. Resnick
Publisher: Springer Science & Business Media
ISBN: 1461203872
Category: Mathematics
Page: 626
View: 4080

Continue Reading →

Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. This text offers easy access to this fundamental topic for many students of applied sciences at many levels. It includes examples, exercises, applications, and computational procedures. It is uniquely useful for beginners and non-beginners in the field. No knowledge of measure theory is presumed.

Basics of Applied Stochastic Processes


Author: Richard Serfozo
Publisher: Springer Science & Business Media
ISBN: 3540893326
Category: Mathematics
Page: 443
View: 5976

Continue Reading →

Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.

Stochastic Processes

Theory and Methods
Author: D. N. Shanbhag,Calyampudi Radhakrishna Rao
Publisher: Gulf Professional Publishing
ISBN: 9780444500144
Category: Mathematics
Page: 967
View: 6115

Continue Reading →

J. Neyman, one of the pioneers in laying the foundations of modern statistical theory, stressed the importance of stochastic processes in a paper written in 1960 in the following terms: Currently in the period of dynamic indeterminism in science, there is hardly a serious piece of research, if treated realistically, does not involve operations on stochastic processes. Arising from the need to solve practical problems, several major advances have taken place in the theory of stochastic processes and their applications. Books by Doob (1953; J. Wiley and Sons), Feller (1957, 1966; J. Wiley and Sons) and Loeve (1960; D. van Nostrand and Col., Inc.) among others, have created growing awareness and interest in the use of stochastic processes in scientific and technological studies.The literature on stochastic processes is very extensive and is distributed in several books and journals.

Stochastic Processes with Applications


Author: Rabi N. Bhattacharya,Edward C. Waymire
Publisher: SIAM
ISBN: 0898716896
Category: Mathematics
Page: 184
View: 7704

Continue Reading →

This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. The book features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walks in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. This book is for graduate students in mathematics, statistics, science and engineering, and it may also be used as a reference by professionals in diverse fields whose work involves the application of probability.

Essentials of Stochastic Processes


Author: Richard Durrett
Publisher: Springer
ISBN: 3319456148
Category: Mathematics
Page: 275
View: 6190

Continue Reading →

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Stochastic Processes for Physicists

Understanding Noisy Systems
Author: Kurt Jacobs
Publisher: Cambridge University Press
ISBN: 1139486799
Category: Science
Page: 204
View: 726

Continue Reading →

Stochastic processes are an essential part of numerous branches of physics, as well as in biology, chemistry, and finance. This textbook provides a solid understanding of stochastic processes and stochastic calculus in physics, without the need for measure theory. In avoiding measure theory, this textbook gives readers the tools necessary to use stochastic methods in research with a minimum of mathematical background. Coverage of the more exotic Levy processes is included, as is a concise account of numerical methods for simulating stochastic systems driven by Gaussian noise. The book concludes with a non-technical introduction to the concepts and jargon of measure-theoretic probability theory. With over 70 exercises, this textbook is an easily accessible introduction to stochastic processes and their applications, as well as methods for numerical simulation, for graduate students and researchers in physics.

Basic Stochastic Processes

A Course Through Exercises
Author: Zdzislaw Brzezniak,Tomasz Zastawniak
Publisher: Springer Science & Business Media
ISBN: 1447105338
Category: Mathematics
Page: 226
View: 9722

Continue Reading →

Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

A Basic Course in Measure and Probability

Theory for Applications
Author: Ross Leadbetter,Stamatis Cambanis,Vladas Pipiras
Publisher: Cambridge University Press
ISBN: 1107020409
Category: Mathematics
Page: 376
View: 4460

Continue Reading →

A concise introduction covering all of the measure theory and probability most useful for statisticians.

Stochastic Processes and Applications

Diffusion Processes, the Fokker-Planck and Langevin Equations
Author: Grigorios A. Pavliotis
Publisher: Springer
ISBN: 1493913239
Category: Mathematics
Page: 339
View: 6909

Continue Reading →

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Random Processes for Engineers


Author: Bruce Hajek
Publisher: Cambridge University Press
ISBN: 1316241246
Category: Technology & Engineering
Page: N.A
View: 3173

Continue Reading →

This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).

Introduction to Stochastic Processes, Second Edition


Author: Gregory F. Lawler
Publisher: CRC Press
ISBN: 9781584886518
Category: Mathematics
Page: 248
View: 1752

Continue Reading →

Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.

Stochastic Processes

An Introduction, Third Edition
Author: Peter Watts Jones,Peter Smith
Publisher: CRC Press
ISBN: 1498778127
Category: Mathematics
Page: 255
View: 1316

Continue Reading →

Based on a well-established and popular course taught by the authors over many years, Stochastic Processes: An Introduction, Third Edition, discusses the modelling and analysis of random experiments, where processes evolve over time. The text begins with a review of relevant fundamental probability. It then covers gambling problems, random walks, and Markov chains. The authors go on to discuss random processes continuous in time, including Poisson, birth and death processes, and general population models, and present an extended discussion on the analysis of associated stationary processes in queues. The book also explores reliability and other random processes, such as branching, martingales, and simple epidemics. A new chapter describing Brownian motion, where the outcomes are continuously observed over continuous time, is included. Further applications, worked examples and problems, and biographical details have been added to this edition. Much of the text has been reworked. The appendix contains key results in probability for reference. This concise, updated book makes the material accessible, highlighting simple applications and examples. A solutions manual with fully worked answers of all end-of-chapter problems, and Mathematica® and R programs illustrating many processes discussed in the book, can be downloaded from crcpress.com.

Stochastic Processes

Basic Theory and Its Applications
Author: Narahari Umanath Prabhu
Publisher: World Scientific
ISBN: 9812706267
Category: Mathematics
Page: 341
View: 7505

Continue Reading →

Most introductory textbooks on stochastic processes which cover standard topics such as Poisson process, Brownian motion, renewal theory and random walks deal inadequately with their applications. Written in a simple and accessible manner, this book addresses that inadequacy and provides guidelines and tools to study the applications. The coverage includes research developments in Markov property, martingales, regenerative phenomena and Tauberian theorems, and covers measure theory at an elementary level.

Theory and Statistical Applications of Stochastic Processes


Author: Yuliya Mishura,Georgiy Shevchenko
Publisher: John Wiley & Sons
ISBN: 1786300508
Category: Mathematics
Page: 400
View: 8142

Continue Reading →

This book is concerned with the theory of stochastic processes and the theoretical aspects of statistics for stochastic processes. It combines classic topics such as construction of stochastic processes, associated filtrations, processes with independent increments, Gaussian processes, martingales, Markov properties, continuity and related properties of trajectories with contemporary subjects: integration with respect to Gaussian processes, Itȏ integration, stochastic analysis, stochastic differential equations, fractional Brownian motion and parameter estimation in diffusion models.