In-situ Small-Angle X-ray Scattering Investigation of Transient Nanostructure of Multi-phase Polymer Materials Under Mechanical Deformation


Author: Ahmad Zeinolebadi
Publisher: Springer Science & Business Media
ISBN: 3642354130
Category: Technology & Engineering
Page: 106
View: 2128

Continue Reading →

The results in this dissertation set the ground to answer a fundamental question in data-driven polymer material science: "Why don't prepared composites show less fatigue than the pure plastics?" A simultaneous analysis of mechanical testing and small angle X-Ray scattering from the DESY source in Hamburg has been applied to approach this question, which is also central to the European research project "Nanotough", and the results are clearly presented in this book. The evolution of the materials structure is visualized and quantitatively analyzed from exhaustive sequences of scattering images. Three different classes of polymer composites are presented as typical and illustrative examples. The obtained results illustrate that the interactions of their components can cause unpredictable structural effects, ultimaltely leading to a weakening of the material, where a reinforcement was expected.

Structure Analysis by Small-Angle X-Ray and Neutron Scattering


Author: L.A. Feigin,D.I. Svergun
Publisher: Springer Science & Business Media
ISBN: 1475766246
Category: Science
Page: 335
View: 5481

Continue Reading →

Small-angle scattering of X rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, includ ing condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications. It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation. Diffraction methods are used for studying matter on all scales, from elementary particles to macro-objects. The use of X rays, neutrons, and electron beams, with wavelengths of about 1 A, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation.

Small-Angle Scattering from Confined and Interfacial Fluids

Applications to Energy Storage and Environmental Science
Author: Yuri B. Melnichenko
Publisher: Springer
ISBN: 3319011049
Category: Technology & Engineering
Page: 314
View: 983

Continue Reading →

This book examines the meso- and nanoscopic aspects of fluid adsorption in porous solids using a non-invasive method of small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS). Starting with a brief summary of the basic assumptions and results of the theory of small-angle scattering from porous media, the author focuses on the practical aspects and methodology of the ambient and high pressure SANS and SAXS experiments and corresponding data analysis. It is illustrated with results of studies of the vapor and supercritical fluid adsorption in porous materials published during the last decade, obtained both for man-made materials (e.g. porous fractal silica, Vycor glass, activated carbon) and geological samples (e.g. sandstones, shales and coal). In order to serve the needs of broad readership, the results are presented in the relevant context (e.g. petroleum exploration, anthropogenic carbon capture and sequestration, ion adsorption in supercapacitors, hydrogen storage, etc.).