Absorption and Scattering of Light by Small Particles


Author: Craig F. Bohren,Donald R. Huffman
Publisher: John Wiley & Sons
ISBN: 3527618163
Category: Science
Page: 544
View: 3741

Continue Reading →

Absorption and Scattering of Light by Small Particles Treating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small particles is inseparable from a full understanding of the optical behavior of the parent material-bulk matter. To divorce one concept from the other is to render any study on scattering theory seriously incomplete. Special features and important topics covered in this book include: * Classical theories of optical properties based on idealized models * Measurements for three representative materials: magnesium oxide, aluminum, and water * An extensive discussion of electromagnetic theory * Numerous exact and approximate solutions to various scattering problems * Examples and applications from physics, astrophysics, atmospheric physics, and biophysics * Some 500 references emphasizing work done since Kerker's 1969 work on scattering theory * Computer programs for calculating scattering by spheres, coated spheres, and infinite cylinders

Electromagnetic Scattering by Particles and Particle Groups

An Introduction
Author: Michael I. Mishchenko
Publisher: Cambridge University Press
ISBN: 0521519926
Category: Science
Page: 450
View: 8714

Continue Reading →

A self-contained, accessible introduction to the basic concepts, formalism and recent advances in electromagnetic scattering, for researchers and graduate students.

Biomedical Photonics Handbook, Second Edition

Fundamentals, Devices, and Techniques
Author: Tuan Vo-Dinh
Publisher: CRC Press
ISBN: 1420085123
Category: Medical
Page: 850
View: 2958

Continue Reading →

Shaped by Quantum Theory, Technology, and the Genomics Revolution The integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents recent fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, students, and clinical providers. The first volume, Fundamentals, Devices, and Techniques, focuses on the fundamentals of biophotonics, optical techniques, and devices. Represents the Collective Work of over 150 Scientists, Engineers, and Clinicians Designed to display the most recent advances in instrumentation and methods, as well as clinical applications in important areas of biomedical photonics to a broad audience, this three-volume handbook provides an inclusive forum that serves as an authoritative reference source for a broad audience involved in the research, teaching, learning, and practice of medical technologies. What’s New in This Edition: A wide variety of photonic biochemical sensing technologies has already been developed for clinical monitoring of physiological parameters, such as blood pressure, blood chemistry, pH, temperature, and the presence of pathological organisms or biochemical species of clinical importance. Advanced photonic detection technologies integrating the latest knowledge of genomics, proteomics, and metabolomics allow sensing of early disease states, thus revolutionizing the medicine of the future. Nanobiotechnology has opened new possibilities for detection of biomarkers of disease, imaging single molecules, and in situ diagnostics at the single-cell level. In addition to these state-of-the-art advancements, the second edition contains new topics and chapters including: • Fiber Optic Probe Design • Laser and Optical Radiation Safety • Photothermal Detection • Multidimensional Fluorescence Imaging • Surface Plasmon Resonance Imaging • Molecular Contrast Optical Coherence Tomography • Multiscale Photoacoustics • Polarized Light for Medical Diagnostics • Quantitative Diffuse Reflectance Imaging • Interferometric Light Scattering • Nonlinear Interferometric Vibrational Imaging • Multimodality Theranostics Nanoplatforms • Nanoscintillator-Based Therapy • SERS Molecular Sentinel Nanoprobes • Plasmonic Coupling Interference Nanoprobes Comprised of three books: Volume I: Fundamentals, Devices, and Techniques; Volume II: Biomedical Diagnostics; and Volume III: Therapeutics and Advanced Biophotonics, this second edition contains eight sections, and provides introductory material in each chapter. It also includes an overview of the topic, an extensive collection of spectroscopic data, and lists of references for further reading.

Introduction to Nanophotonics


Author: Sergey V. Gaponenko
Publisher: Cambridge University Press
ISBN: 1139643568
Category: Science
Page: N.A
View: 6918

Continue Reading →

Nanophotonics is where photonics merges with nanoscience and nanotechnology, and where spatial confinement considerably modifies light propagation and light-matter interaction. Describing the basic phenomena, principles, experimental advances and potential impact of nanophotonics, this graduate-level textbook is ideal for students in physics, optical and electronic engineering and materials science. The textbook highlights practical issues, material properties and device feasibility, and includes the basic optical properties of metals, semiconductors and dielectrics. Mathematics is kept to a minimum and theoretical issues are reduced to a conceptual level. Each chapter ends in problems so readers can monitor their understanding of the material presented. The introductory quantum theory of solids and size effects in semiconductors are considered to give a parallel discussion of wave optics and wave mechanics of nanostructures. The physical and historical interplay of wave optics and quantum mechanics is traced. Nanoplasmonics, an essential part of modern photonics, is also included.

Atmospheric Radiation

A Primer with Illustrative Solutions
Author: James A. Coakley Jr.,Ping Yang
Publisher: John Wiley & Sons
ISBN: 3527681469
Category: Science
Page: 256
View: 4965

Continue Reading →

This textbook is a first-look at radiative transfer in planetary atmospheres with a particular focus on the Earth's atmosphere and climate. It covers the basics of the radiative transfer of sunlight, treating absorption and scattering, and the transfer of the thermal infrared. The examples included show how the solutions of the radiative transfer equation are used to evaluate changes in the Earth?s energy budget due to changes in atmospheric composition, how these changes lead to climate change, and also how remote sensing can be used to probe the thermal structure and composition of planetary atmospheres. The examples motivate students by leading them to a better understanding of and appreciation for the computer-generated numerical results. Aimed at upper-division undergraduates and beginning graduate students in physics and atmospheric sciences, the book is designed to cover the essence of the material in a 10-week course, while the material in the optional sections will facilitate its use at the more leisurely pace and in-depth focus of a semester course.

Advanced Optical Flow Cytometry

Methods and Disease Diagnoses
Author: Valery V. Tuchin
Publisher: John Wiley & Sons
ISBN: 3527634290
Category: Science
Page: 740
View: 6961

Continue Reading →

A detailed look at the latest research in non-invasive in vivo cytometry and its applications, with particular emphasis on novel biophotonic methods, disease diagnosis, and monitoring of disease treatment at single cell level in stationary and flow conditions. This book thus covers the spectrum ranging from fundamental interactions between light, cells, vascular tissue, and cell labeling particles, to strategies and opportunities for preclinical and clinical research. General topics include light scattering by cells, fast video microscopy, polarization, laser-scanning, fluorescence, Raman, multi-photon, photothermal, and photoacoustic methods for cellular diagnostics and monitoring of disease treatment in living organisms. Also presented are discussions of advanced methods and techniques of classical flow cytometry.

Astronomical Photometry

A Guide
Author: C. Sterken,J. Manfroid
Publisher: Springer Science & Business Media
ISBN: 9780792316534
Category: Science
Page: 272
View: 2975

Continue Reading →

Small and large telescopes are being installed all around the world. Astronomers have thus acquired better access to more modern equipment; not in the least to photometers, which are very important tools for the contemporary observer. This development of higher quality and more sensitive equipment makes it very necessary to improve the accuracy of the measurements. This guide helps the astronomer and astronomy student to improve the quality of their photometric measurements and to extract a maximum of information from their observations. The book is based on the authors' observing experience, spending numerious nights behind various instruments at many different observatories.

The Physics of Atoms and Quanta

Introduction to Experiments and Theory ; with ... 173 Problems and Solutions
Author: Hermann Haken,Hermann P. J. Haken,Hans Christoph Wolf
Publisher: Springer Science & Business Media
ISBN: 9783540672746
Category: Science
Page: 503
View: 6328

Continue Reading →

The Physics of Atoms and Quanta is a thorough introduction to experiments and theory in this field. Every classical and modern aspect is covered and discussed in detail. The sixth edition includes new developments, as well as new experiments in quantum entanglement, Schrodingers cat, the quantum computer, quantum information, the atom laser, and much more. A wealth of experiments and problems are included. As this reference ends with the fundamentals of classical bonding, it leads into the authors' more advanced book Molecular Physics and Elements of Quantum Chemistry.

Comprehensive Nanoscience and Technology


Author: N.A
Publisher: Academic Press
ISBN: 9780123743961
Category: Science
Page: 2774
View: 723

Continue Reading →

From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.

The Physics of Atoms and Quanta

Introduction to Experiments and Theory
Author: Hermann Haken,Hans Christoph Wolf
Publisher: Springer Science & Business Media
ISBN: 3540292810
Category: Science
Page: 520
View: 7115

Continue Reading →

The highly positive affirmation and wide reception that this book continues to receive from professors and students ahke is the occasion for this 7th edition. Once again we have included a number of valuable suggestions for improvements, which we address as appropriate. In addition, we refer to a number of developments in atomic physics. Of these new developments in regard to exotic atoms, we mention antihydrogen in par ticular, because fundamental experiments in matter and antimatter can be expected in the future. Furthermore, we have inserted a chapter on the behaviour of atoms in strong elec trical fields. Experiments with corresponding lasers could only recently be realized. We thank our Jenaer colleague, R. Sauerbrey, for his contribution of this chapter. We have also included a new chapter on the behaviour of the hydrogen atom in strong magnetic fields. The results are of profound interest for two very different fields of physics: on the one hand, according to classical physics, one expects chaotic behaviour from Rydberg atoms in magnetic fields that can be created in the laborato ry; thus, an association can be drawn to aspects of chaos theory and the problems of quantum chaos. On the other hand, the very strong fields necessary for low quantum numbers are realized in the cosmos, in particular with white dwarfs and neutron stars.

Astromineralogy


Author: Thomas Henning
Publisher: Springer Science & Business Media
ISBN: 3540443231
Category: Science
Page: 281
View: 2096

Continue Reading →

Astromineralogy deals with the science of gathering mineralogical information from the astronomical spectroscopy of asteroids, comets and dust in the circumstellar environments in general. It is only recently, however, that this field has received a tremendous boost with the reliable identification of minerals by the Infrared Space Observatory. This book is the first comprehensive and coherent account of this exciting field. Beyond addressing the specialist in the field, the book is intended as a high-level but readable introduction to astromineralogy for both the nonspecialist researcher and the advanced student.

Concepts of Particle Physics


Author: Kurt Gottfried,Victor F. Weisskopf
Publisher: Oxford University Press
ISBN: 9780195365276
Category: Science
Page: 448
View: 4591

Continue Reading →

The second volume of this authoritative work traces the material outlined in the first, but in far greater detail and with a much higher degree of sophistication. The authors begin with the theory of the electromagnetic interaction, and then consider hadronic structure, exploring the accuracy of the quark model by examining the excited states of baryons and mesons. They introduce the color variable as a prelude to the development of quantum chromodynamics, the theory of the strong interaction, and go on to discuss the electroweak interaction--the broken symmetry of which they explain by the Higgs mechanism--and conclude with a consideration of grand unification theories.

Photonics, Volume 1

Fundamentals of Photonics and Physics
Author: David L. Andrews
Publisher: John Wiley & Sons
ISBN: 1119009707
Category: Technology & Engineering
Page: 472
View: 5932

Continue Reading →

Covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonics. This volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Polarization States; Quantum Electrodynamics; Quantum Information and Computing; Quantum Optics; Resonance Energy Transfer; Surface Optics; Ultrafast Pulse Phenomena. Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.

Light Scattering by Small Particles


Author: H. C. van de Hulst
Publisher: Courier Corporation
ISBN: 0486139751
Category: Science
Page: 496
View: 1535

Continue Reading →

Comprehensive treatment of light-scattering properties of small, independent particles, including a full range of useful approximation methods for researchers in chemistry, meteorology, and astronomy. 46 tables. 59 graphs. 44 illustrations.

Henry's Clinical Diagnosis and Management by Laboratory Methods E-Book


Author: Richard A. McPherson,Matthew R. Pincus
Publisher: Elsevier Health Sciences
ISBN: 1455726842
Category: Medical
Page: 1568
View: 5991

Continue Reading →

Recognized as the definitive book in laboratory medicine since 1908, Henry’s Clinical Diagnosis and Management by Laboratory Methods, edited by Richard A. McPherson, MD and Matthew R. Pincus, MD, PhD, is a comprehensive, multidisciplinary pathology reference that gives you state-of-the-art guidance on lab test selection and interpretation of results. Revisions throughout keep you current on the latest topics in the field, such as biochemical markers of bone metabolism, clinical enzymology, pharmacogenomics, and more! A user-friendly full-color layout puts all the latest, most essential knowledge at your fingertips. Update your understanding of the scientific foundation and clinical application of today's complete range of laboratory tests. Get optimal test results with guidance on error detection, correction, and prevention as well as cost-effective test selection. Reference the information you need quickly and easily thanks to a full-color layout, many new color illustrations and visual aids, and an organization by organ system. Master all the latest approaches in clinical laboratory medicine with new and updated coverage of: the chemical basis for analyte assays and common interferences; lipids and dyslipoproteinemia; markers in the blood for cardiac injury evaluation and related stroke disorders; coagulation testing for antiplatelet drugs such as aspirin and clopidogrel; biochemical markers of bone metabolism; clinical enzymology; hematology and transfusion medicine; medical microbiology; body fluid analysis; and many other rapidly evolving frontiers in the field. Effectively monitor the pace of drug clearing in patients undergoing pharmacogenomic treatments with a new chapter on this groundbreaking new area. Apply the latest best practices in clinical laboratory management with special chapters on organization, work flow, quality control, interpretation of results, informatics, financial management, and establishing a molecular diagnostics laboratory. Confidently prepare for the upcoming recertification exams for clinical pathologists set to begin in 2016.

Diffractive Nanophotonics


Author: Victor A Soifer
Publisher: CRC Press
ISBN: 146659070X
Category: Technology & Engineering
Page: 704
View: 5768

Continue Reading →

Diffractive Nanophotonics demonstrates the utility of the well-established methods of diffractive computer optics in solving nanophotonics tasks. It is concerned with peculiar properties of laser light diffraction by microoptics elements with nanoscale features and light confinement in subwavelength space regions. Written by recognized experts in this field, the book covers in detail a wide variety of advanced methods for the rigorous simulation of light diffraction. The authors apply their expertise to addressing cutting-edge problems in nanophotonics. Chapters consider the basic equations of diffractive nanophotonics and related transformations and numerical methods for solving diffraction problems under strict electromagnetic theory. They examine the diffraction of light on two-dimensional microscopic objects of arbitrary shape and present a numerical method for solving the problem of diffraction on periodic diffractive micro- and nanostructures. This method is used in modern trends in nanophotonics, such as plasmonics, metamaterials, and nanometrology. The book describes the simulation of electromagnetic waves in nanophotonic devices and discusses two methods of calculating the spatial modes of microstructured photonic crystal fibres—a relatively new class of optical fibres with the properties of photonic crystals. The book explains the theory of paraxial and non-paraxial laser beams with axial symmetry and an orbital angular momentum—called vortex beams—which are used for optical trapping and rotating micro- and nanoparticles in a ring in the cross-sectional plane of the beam. The final chapter discusses methods for calculating the force and torque exerted by the electromagnetic field focused onto the microparticle of arbitrary form, whose dimensions are comparable with the wavelength of light.