Gauge Theory and Symplectic Geometry

Author: Jacques Hurtubise,François Lalonde
Publisher: Springer Science & Business Media
ISBN: 9780792345008
Category: Mathematics
Page: 212
View: 5776

Continue Reading →

Gauge theory, symplectic geometry and symplectic topology are important areas at the crossroads of several mathematical disciplines. The present book, with expertly written surveys of recent developments in these areas, includes some of the first expository material of Seiberg-Witten theory, which has revolutionised the subjects since its introduction in late 1994. Topics covered include: introductions to Seiberg-Witten theory, to applications of the S-W theory to four-dimensional manifold topology, and to the classification of symplectic manifolds; an introduction to the theory of pseudo-holomorphic curves and to quantum cohomology; algebraically integrable Hamiltonian systems and moduli spaces; the stable topology of gauge theory, Morse-Floer theory; pseudo-convexity and its relations to symplectic geometry; generating functions; Frobenius manifolds and topological quantum field theory.

Quasigroups and loops

theory and applications
Author: Orin Chein,Hala O. Pflugfelder,Jonathan D. H. Smith
Publisher: N.A
Category: Loops (Group theory)
Page: 568
View: 354

Continue Reading →

Mikio Sato

A Great Japanese Mathematician of the Twentieth Century
Author: Mikio Satō
Publisher: N.A
Category: Mathematics, Japanese
Page: 532
View: 5468

Continue Reading →

Mathematics and Life Sciences

Author: Alexandra V. Antoniouk,Roderick V. N. Melnik
Publisher: Walter de Gruyter
ISBN: 3110288532
Category: Mathematics
Page: 328
View: 9186

Continue Reading →

The book provides a unique collection of in-depth mathematical, statistical, and modeling methods and techniques for life sciences, as well as their applications in a number of areas within life sciences. It also includes a range of new ideas that represent emerging frontiers in life sciences where the application of such quantitative methods and techniques is becoming increasingly important. The book is aimed at researchers in academia, practitioners and graduate students who want to foster interdisciplinary collaborations required to meet the challenges at the interface of modern life sciences and mathematics.

Heidelberger Jahrbücher

Author: Universitäts-Gesellschaft Heidelberg
Publisher: Springer-Verlag
ISBN: 3642664237
Category: Juvenile Nonfiction
Page: 322
View: 5146

Continue Reading →

The Theory of Hardy's Z-Function

Author: A. Ivić
Publisher: Cambridge University Press
ISBN: 1107028833
Category: Mathematics
Page: 245
View: 7316

Continue Reading →

"This book is an outgrowth of a mini-course held at the Arctic Number Theory School, University of Helsinki, May 18-25, 2011. The central topic is Hardy's function, of great importance in the theory of the Riemann zeta-function. It is named after GodfreyHarold Hardy FRS (1877-1947), who was a prominent English mathematician, well-known for his achievements in number theory and mathematical analysis"--

Integrable Systems

From Classical to Quantum : Proceedings of the 38th Session of the Seminaire de Mathématiques Supérieures, July 26-August 6, 1999 Montréal, Québec, Canada
Author: John P. Harnad,Gert Sabidussi,Pavel Winternitz
Publisher: American Mathematical Soc.
ISBN: 9780821870228
Category: Mathematics
Page: 264
View: 5441

Continue Reading →

La France littéraire contenant: 1. Les académies établies à Paris et dans les différentes villes du royaume. 2. Les auteurs vivans avec la liste de leurs ouvrages. 3. Les auteurs morts depuis l'année 1751 inclusivement, avec la liste de leurs ouvrages. 4. Le catalogue alphabétique des ouvrages de tous ces auteurs [par J. De La Porte et J. d'Hébrail].

Author: Joseph de La Porte,Jacques Hébrail,Joseph André Guiot
Publisher: N.A
Page: N.A
View: 1185

Continue Reading →

E.B. Christoffel

The Influence of His Work on Mathematics and the Physical Sciences
Publisher: Springer-Verlag
ISBN: 3034854528
Category: Science
Page: 761
View: 2739

Continue Reading →


Neu herausgegeben von Alexander Schmidt
Author: Jürgen Neukirch
Publisher: Springer-Verlag
ISBN: 364217325X
Category: Mathematics
Page: 204
View: 2805

Continue Reading →

Der Klassiker zum Thema bietet Lesern, die mit den Grundlagen der algebraischen Zahlentheorie vertraut sind, einen raschen Zugang zur Klassenkörpertheorie. Die Neuauflage ist eine verbesserte Version des 1969 in der Reihe B. I.-Hochschulskripten (Bibliographisches Institut Mannheim) erschienenen gleichnamigen Bandes. Das Werk besteht aus drei Teilen: Im ersten wird die Kohomologie der endlichen Gruppen behandelt, im zweiten die lokale Klassenkörpertheorie, der dritte Teil widmet sich der Klassenkörpertheorie der endlichen algebraischen Zahlkörper.