Robust Control System Networks

How to Achieve Reliable Control After Stuxnet
Author: Ralph Langner
Publisher: Momentum Press
ISBN: 1606503022
Category: Computers
Page: 206
View: 7292

Continue Reading →

From the researcher who was one of the first to identify and analyze the infamous industrial control system malware "Stuxnet," comes a book that takes a new, radical approach to making Industrial control systems safe from such cyber attacks: design the controls systems themselves to be "robust." Other security experts advocate risk management, implementing more firewalls and carefully managing passwords and access. Not so this book: those measures, while necessary, can still be circumvented. Instead, this book shows in clear, concise detail how a system that has been set up with an eye toward quality design in the first place is much more likely to remain secure and less vulnerable to hacking, sabotage or malicious control. It blends several well-established concepts and methods from control theory, systems theory, cybernetics and quality engineering to create the ideal protected system. The book's maxim is taken from the famous quality engineer William Edwards Deming, "If I had to reduce my message to management to just a few words, I'd say it all has to do with reducing variation." Highlights include: - An overview of the problem of "cyber fragility" in industrial control systems - How to make an industrial control system "robust," including principal design objectives and overall strategic planning - Why using the methods of quality engineering like the Taguchi method, SOP and UML will help to design more "armored" industrial control systems.

Cybersecurity for Industrial Control Systems

SCADA, DCS, PLC, HMI, and SIS
Author: Tyson Macaulay,Bryan L. Singer
Publisher: CRC Press
ISBN: 1439801983
Category: Business & Economics
Page: 203
View: 2855

Continue Reading →

As industrial control systems (ICS), including SCADA, DCS, and other process control networks, become Internet-facing, they expose crucial services to attack. Threats like Duqu, a sophisticated worm found in the wild that appeared to share portions of its code with the Stuxnet worm, emerge with increasing frequency. Explaining how to develop and implement an effective cybersecurity program for ICS, Cybersecurity for Industrial Control Systems: SCADA, DCS, PLC, HMI, and SIS provides you with the tools to ensure network security without sacrificing the efficiency and functionality of ICS. Highlighting the key issues that need to be addressed, the book begins with a thorough introduction to ICS. It discusses business, cost, competitive, and regulatory drivers and the conflicting priorities of convergence. Next, it explains why security requirements differ from IT to ICS. It differentiates when standard IT security solutions can be used and where SCADA-specific practices are required. The book examines the plethora of potential threats to ICS, including hi-jacking malware, botnets, spam engines, and porn dialers. It outlines the range of vulnerabilities inherent in the ICS quest for efficiency and functionality that necessitates risk behavior such as remote access and control of critical equipment. Reviewing risk assessment techniques and the evolving risk assessment process, the text concludes by examining what is on the horizon for ICS security, including IPv6, ICSv6 test lab designs, and IPv6 and ICS sensors.

Protecting Industrial Control Systems from Electronic Threats


Author: Joseph Weiss
Publisher: Momentum Press
ISBN: 1606501976
Category: Computers
Page: 327
View: 8950

Continue Reading →

Aimed at both the novice and expert in IT security and industrial control systems (ICS), this book will help readers gain a better understanding of protecting ICSs from electronic threats. Cyber security is getting much more attention and SCADA security (Supervisory Control and Data Acquisition) is a particularly important part of this field, as are Distributed Control Systems (DCS), Programmable Logic Controllers (PLCs), Remote Terminal Units (RTUs), Intelligent Electronic Devices (IEDs)-and all the other, field controllers, sensors, and drives, emission controls, and that make up the intelligence of modern industrial buildings and facilities. This book will help the reader better understand what is industrial control system cyber security, why is it different than IT security, what has really happened to date, and what needs to be done. Loads of practical advice is offered on everything from clarity on current cyber-security systems and how they can be integrated into general IT systems, to how to conduct risk assessments and how to obtain certifications, to future trends in legislative and regulatory issues affecting industrial security.

Robust Control for Uncertain Networked Control Systems with Random Delays


Author: Dan Huang,Sing Kiong Nguang
Publisher: Springer Science & Business Media
ISBN: 1848826788
Category: Technology & Engineering
Page: 168
View: 6834

Continue Reading →

"Robust Control for Uncertain Networked Control Systems with Random Delays" addresses the problem of analysis and design of networked control systems when the communication delays are varying in a random fashion. The random nature of the time delays is typical for commercially used networks, such as a DeviceNet (which is a controller area network) and Ethernet network. The main technique used in this book is based on the Lyapunov-Razumikhin method, which results in delay-dependent controllers. The existence of such controllers and fault estimators are given in terms of the solvability of bilinear matrix inequalities. Iterative algorithms are proposed to change this non-convex problem into quasi-convex optimization problems, which can be solved effectively by available mathematical tools. Finally, to demonstrate the effectiveness and advantages of the proposed design method in the book, numerical examples are given in each designed control system.

Advanced Control Engineering


Author: Roland S. Burns
Publisher: Butterworth-Heinemann
ISBN: 9780750651004
Category: Technology & Engineering
Page: 450
View: 4459

Continue Reading →

Advanced Control Engineering provides a complete course in control engineering for undergraduates of all technical disciplines. Starting with a basic overview of elementary control theory this text quickly moves on to a rigorous examination of more advanced and cutting edge date aspects such as robust and intelligent control, including neural networks and genetic algorithms. With examples from aeronautical, marine and many other types of engineering, Roland Burns draws on his extensive teaching and practical experience presents the subject in an easily understood and applied manner. Control Engineering is a core subject in most technical areas. Problems in each chapter, numerous illustrations and free Matlab files on the accompanying website are brought together to provide a valuable resource for the engineering student and lecturer alike. Complete Course in Control Engineering Real life case studies Numerous problems

Robust Control of Time-delay Systems


Author: Qing-Chang Zhong
Publisher: Springer Science & Business Media
ISBN: 1846282659
Category: Technology & Engineering
Page: 231
View: 617

Continue Reading →

Recently, there have been significant developments in robust control of time-delay systems. This volume presents a systematic treatment of robust control for such systems in the frequency domain. The emphasis is on systems with a single input or output delay, although the delay-free part of the plant can be multi-input-multi-output, in which case the delays in different channels should be the same. The author covers the whole range of H-infinity control of time-delay systems: from controller parameterization implementation; from the Nehari problem to the four-block problem; from theoretical developments to practical issues. The major tools used are similarity transformation, the chain-scattering approach and J-spectral factorization. Self-contained, "Robust Control of Time-delay Systems" will interest control theorists and mathematicians working with time-delay systems. Its methodical approach will be of value to graduates studying general robust control theory or its applications in time-delay systems.

Optimal and Robust Control

Advanced Topics with MATLAB®
Author: Luigi Fortuna,Mattia Frasca
Publisher: CRC Press
ISBN: 146650191X
Category: Technology & Engineering
Page: 251
View: 1716

Continue Reading →

While there are many books on advanced control for specialists, there are few that present these topics for nonspecialists. Assuming only a basic knowledge of automatic control and signals and systems, Optimal and Robust Control: Advanced Topics with MATLAB® offers a straightforward, self-contained handbook of advanced topics and tools in automatic control. Techniques for Controlling System Performance in the Presence of Uncertainty The book deals with advanced automatic control techniques, paying particular attention to robustness—the ability to guarantee stability in the presence of uncertainty. It explains advanced techniques for handling uncertainty and optimizing the control loop. It also details analytical strategies for obtaining reduced order models. The authors then propose using the Linear Matrix Inequalities (LMI) technique as a unifying tool to solve many types of advanced control problems. Topics covered include: LQR and H-infinity approaches Kalman and singular value decomposition Open-loop balancing and reduced order models Closed-loop balancing Passive systems and bounded-real systems Criteria for stability control This easy-to-read text presents the essential theoretical background and provides numerous examples and MATLAB exercises to help the reader efficiently acquire new skills. Written for electrical, electronic, computer science, space, and automation engineers interested in automatic control, this book can also be used for self-study or for a one-semester course in robust control.

Robust Control Design with MATLAB®


Author: Da-Wei Gu,Petko Petkov,Mihail M Konstantinov
Publisher: Springer Science & Business Media
ISBN: 1846280915
Category: Technology & Engineering
Page: 389
View: 9812

Continue Reading →

Shows readers how to exploit the capabilities of the MATLAB® Robust Control and Control Systems Toolboxes to the fullest using practical robust control examples.

Networked Control Systems

Theory and Applications
Author: Fei-Yue Wang,Derong Liu
Publisher: Springer Science & Business Media
ISBN: 1848002157
Category: Computers
Page: 344
View: 527

Continue Reading →

Networked control systems (NCS) confer advantages of cost reduction, system diagnosis and flexibility, minimizing wiring and simplifying the addition and replacement of individual elements; efficient data sharing makes taking globally intelligent control decisions easier with NCS. The applications of NCS range from the large scale of factory automation and plant monitoring to the smaller networks of computers in modern cars, places and autonomous robots. Networked Control Systems presents recent results in stability and robustness analysis and new developments related to networked fuzzy and optimal control. Many chapters contain case-studies, experimental, simulation or other application-related work showing how the theories put forward can be implemented. The state-of-the art research reported in this volume by an international team of contributors makes it an essential reference for researchers and postgraduate students in control, electrical, computer and mechanical engineering and computer science.

Robust Control Engineering

Practical QFT Solutions
Author: Mario Garcia-Sanz
Publisher: CRC Press
ISBN: 1315394979
Category: Technology & Engineering
Page: 578
View: 8799

Continue Reading →

This book thoroughly covers the fundamentals of the QFT robust control, as well as practical control solutions, for unstable, time-delay, non-minimum phase or distributed parameter systems, plants with large model uncertainty, high-performance specifications, nonlinear components, multi-input multi-output characteristics or asymmetric topologies. The reader will discover practical applications through a collection of fifty successful, real world case studies and projects, in which the author has been involved during the last twenty-five years, including commercial wind turbines, wastewater treatment plants, power systems, satellites with flexible appendages, spacecraft, large radio telescopes, and industrial manufacturing systems. Furthermore, the book presents problems and projects with the popular QFT Control Toolbox (QFTCT) for MATLAB, which was developed by the author.

Analysis and Control of Complex Dynamical Systems

Robust Bifurcation, Dynamic Attractors, and Network Complexity
Author: Kazuyuki Aihara,Jun-ichi Imura,Tetsushi Ueta
Publisher: Springer
ISBN: 4431550135
Category: Technology & Engineering
Page: 211
View: 5955

Continue Reading →

This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

Robust Control Design: An Optimal Control Approach


Author: Feng Lin
Publisher: John Wiley & Sons
ISBN: 9780470059562
Category: Science
Page: 378
View: 6907

Continue Reading →

Comprehensive and accessible guide to the three main approaches to robust control design and its applications Optimal control is a mathematical field that is concerned with control policies that can be deduced using optimization algorithms. The optimal control approach to robust control design differs from conventional direct approaches to robust control that are more commonly discussed by firstly translating the robust control problem into its optimal control counterpart, and then solving the optimal control problem. Robust Control Design: An Optimal Control Approach offers a complete presentation of this approach to robust control design, presenting modern control theory in an concise manner. The other two major approaches to robust control design, the H_infinite approach and the Kharitonov approach, are also covered and described in the simplest terms possible, in order to provide a complete overview of the area. It includes up-to-date research, and offers both theoretical and practical applications that include flexible structures, robotics, and automotive and aircraft control. Robust Control Design: An Optimal Control Approach will be of interest to those needing an introductory textbook on robust control theory, design and applications as well as graduate and postgraduate students involved in systems and control research. Practitioners will also find the applications presented useful when solving practical problems in the engineering field.

A Course in Robust Control Theory

A Convex Approach
Author: Geir E. Dullerud,Fernando Paganini
Publisher: Springer Science & Business Media
ISBN: 1475732902
Category: Mathematics
Page: 419
View: 7343

Continue Reading →

During the 90s robust control theory has seen major advances and achieved a new maturity, centered around the notion of convexity. The goal of this book is to give a graduate-level course on this theory that emphasizes these new developments, but at the same time conveys the main principles and ubiquitous tools at the heart of the subject. Its pedagogical objectives are to introduce a coherent and unified framework for studying the theory, to provide students with the control-theoretic background required to read and contribute to the research literature, and to present the main ideas and demonstrations of the major results. The book will be of value to mathematical researchers and computer scientists, graduate students planning to do research in the area, and engineering practitioners requiring advanced control techniques.

Robust control


Author: Peter Dorato,IEEE Communications Society
Publisher: IEEE
ISBN: N.A
Category: Science
Page: 519
View: 9605

Continue Reading →

Robust Control in Power Systems


Author: Bikash Pal,Balarko Chaudhuri
Publisher: Springer Science & Business Media
ISBN: 0387259503
Category: Technology & Engineering
Page: 190
View: 1228

Continue Reading →

Robust Control in Power Systems deals with the applications of new techniques in linear system theory to control low frequency oscillations in power systems. The book specifically focuses on the analysis and damping of inter-area oscillations in the systems which are in the range of 0.2-1 Hz. The damping control action is injected through high power electronic devices known as flexible AC transmission system (FACTS) controllers. Three commonly used FACTS controllers: controllable series capacitors (CSCs) controllable phase shifters (CPSs) and static var compensators (SVCs) have been used in this book to control the inter-area oscillations. The overview of linear system theory from the perspective of power system control is explained through examples. The damping control design is formulated as norm optimization problem. The H_infinity, H2 norm of properly defined transfer functions are minimized in linear matrix inequalities (LMI) framework to obtain desired performance and stability robustness. Both centralized and decentralized control structures are used. Usually the transmission of feedback signal from a remote location encounters delays making it difficult to control the system. Smith predictor based approach has been successfully explored in this book as a solution to such a problem. Robust Control in Power Systems will be valuable to academicians in the areas of power, control and system theory, as well as professionals in the power industry.

Robust Control and Filtering for Time-Delay Systems


Author: Magdi S. Mahmoud
Publisher: CRC Press
ISBN: 9780824703271
Category: Technology & Engineering
Page: 448
View: 1400

Continue Reading →

A discussion of robust control and filtering for time-delay systems. It provides information on approaches to stability, stabilization, control design, and filtering aspects of electronic and computer systems - explicating the developments in time-delay systems and uncertain time-delay systems. There are appendices detailing important facets of matrix theory, standard lemmas and mathematical results, and applications of industry-tested software.

Control of Complex Systems

Theory and Applications
Author: Kyriakos Vamvoudakis,Sarangapani Jagannathan
Publisher: Butterworth-Heinemann
ISBN: 0128054379
Category: Technology & Engineering
Page: 762
View: 8771

Continue Reading →

In the era of cyber-physical systems, the area of control of complex systems has grown to be one of the hardest in terms of algorithmic design techniques and analytical tools. The 23 chapters, written by international specialists in the field, cover a variety of interests within the broader field of learning, adaptation, optimization and networked control. The editors have grouped these into the following 5 sections: “Introduction and Background on Control Theory”, “Adaptive Control and Neuroscience”, “Adaptive Learning Algorithms”, “Cyber-Physical Systems and Cooperative Control”, “Applications”. The diversity of the research presented gives the reader a unique opportunity to explore a comprehensive overview of a field of great interest to control and system theorists. This book is intended for researchers and control engineers in machine learning, adaptive control, optimization and automatic control systems, including Electrical Engineers, Computer Science Engineers, Mechanical Engineers, Aerospace/Automotive Engineers, and Industrial Engineers. It could be used as a text or reference for advanced courses in complex control systems. • Collection of chapters from several well-known professors and researchers that will showcase their recent work • Presents different state-of-the-art control approaches and theory for complex systems • Gives algorithms that take into consideration the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals and malicious attacks compromising the security of networked teams • Real system examples and figures throughout, make ideas concrete Includes chapters from several well-known professors and researchers that showcases their recent work Presents different state-of-the-art control approaches and theory for complex systems Explores the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals, and malicious attacks compromising the security of networked teams Serves as a helpful reference for researchers and control engineers working with machine learning, adaptive control, and automatic control systems

Robust Control for Nonlinear Time-Delay Systems


Author: Changchun Hua,Liuliu Zhang,Xinping Guan
Publisher: Springer
ISBN: 9811051313
Category: Technology & Engineering
Page: 300
View: 7275

Continue Reading →

This book reports on the latest findings concerning nonlinear control theory and applications. It presents novel work on several kinds of commonly encountered nonlinear time-delay systems, including those whose nonlinear terms satisfy high-order polynomial form or general nonlinear form, those with nonlinear input or a triangular structure, and so on. As such, the book will be of interest to university researchers, R&D engineers and graduate students in the fields of control theory and control engineering who wish to learn about the core principles, methods, algorithms, and applications of nonlinear time-delay systems.

Nonlinear Control of Dynamic Networks


Author: Tengfei Liu,Zhong-Ping Jiang,David J. Hill
Publisher: CRC Press
ISBN: 1466584602
Category: Technology & Engineering
Page: 345
View: 4737

Continue Reading →

Significant progress has been made on nonlinear control systems in the past two decades. However, many of the existing nonlinear control methods cannot be readily used to cope with communication and networking issues without nontrivial modifications. For example, small quantization errors may cause the performance of a "well-designed" nonlinear control system to deteriorate. Motivated by the need for new tools to solve complex problems resulting from smart power grids, biological processes, distributed computing networks, transportation networks, robotic systems, and other cutting-edge control applications, Nonlinear Control of Dynamic Networks tackles newly arising theoretical and real-world challenges for stability analysis and control design, including nonlinearity, dimensionality, uncertainty, and information constraints as well as behaviors stemming from quantization, data-sampling, and impulses. Delivering a systematic review of the nonlinear small-gain theorems, the text: Supplies novel cyclic-small-gain theorems for large-scale nonlinear dynamic networks Offers a cyclic-small-gain framework for nonlinear control with static or dynamic quantization Contains a combination of cyclic-small-gain and set-valued map designs for robust control of nonlinear uncertain systems subject to sensor noise Presents a cyclic-small-gain result in directed graphs and distributed control of nonlinear multi-agent systems with fixed or dynamically changing topology Based on the authors’ recent research, Nonlinear Control of Dynamic Networks provides a unified framework for robust, quantized, and distributed control under information constraints. Suggesting avenues for further exploration, the book encourages readers to take into consideration more communication and networking issues in control designs to better handle the arising challenges.

Neural Systems for Control


Author: Omid Omidvar,David L. Elliott
Publisher: Elsevier
ISBN: 9780080537399
Category: Computers
Page: 358
View: 8654

Continue Reading →

Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory Represents the most up-to-date developments in this rapidly growing application area of neural networks Takes a new and novel approach to system identification and synthesis