Random Fields and Geometry


Author: R. J. Adler,Jonathan E. Taylor
Publisher: Springer Science & Business Media
ISBN: 9780387481166
Category: Mathematics
Page: 454
View: 1222

Continue Reading →

This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory.

The Geometry of Random Fields


Author: Robert J. Adler
Publisher: SIAM
ISBN: 0898716934
Category: Mathematics
Page: 184
View: 1381

Continue Reading →

An important treatment of the geometric properties of sets generated by random fields, including a comprehensive treatment of the mathematical basics of random fields in general. It is a standard reference for all researchers with an interest in random fields, whether they be theoreticians or come from applied areas.

Geometric and Spectral Analysis


Author: Pierre Albin,Dmitry Jakobson, Frédéric Rochon
Publisher: American Mathematical Soc.
ISBN: 1470410435
Category: Mathematics
Page: 366
View: 4599

Continue Reading →

In 2012, the Centre de Recherches Mathématiques was at the center of many interesting developments in geometric and spectral analysis, with a thematic program on Geometric Analysis and Spectral Theory followed by a thematic year on Moduli Spaces, Extremality and Global Invariants. This volume contains original contributions as well as useful survey articles of recent developments by participants from three of the workshops organized during these programs: Geometry of Eigenvalues and Eigenfunctions, held from June 4-8, 2012; Manifolds of Metrics and Probabilistic Methods in Geometry and Analysis, held from July 2-6, 2012; and Spectral Invariants on Non-compact and Singular Spaces, held from July 23-27, 2012. The topics covered in this volume include Fourier integral operators, eigenfunctions, probability and analysis on singular spaces, complex geometry, Kähler-Einstein metrics, analytic torsion, and Strichartz estimates. This book is co-published with the Centre de Recherches Mathématiques.

Superconcentration and Related Topics


Author: Sourav Chatterjee
Publisher: Springer Science & Business Media
ISBN: 3319038869
Category: Mathematics
Page: 156
View: 4319

Continue Reading →

A certain curious feature of random objects, introduced by the author as “super concentration,” and two related topics, “chaos” and “multiple valleys,” are highlighted in this book. Although super concentration has established itself as a recognized feature in a number of areas of probability theory in the last twenty years (under a variety of names), the author was the first to discover and explore its connections with chaos and multiple valleys. He achieves a substantial degree of simplification and clarity in the presentation of these findings by using the spectral approach. Understanding the fluctuations of random objects is one of the major goals of probability theory and a whole subfield of probability and analysis, called concentration of measure, is devoted to understanding these fluctuations. This subfield offers a range of tools for computing upper bounds on the orders of fluctuations of very complicated random variables. Usually, concentration of measure is useful when more direct problem-specific approaches fail; as a result, it has massively gained acceptance over the last forty years. And yet, there is a large class of problems in which classical concentration of measure produces suboptimal bounds on the order of fluctuations. Here lies the substantial contribution of this book, which developed from a set of six lectures the author first held at the Cornell Probability Summer School in July 2012. The book is interspersed with a sizable number of open problems for professional mathematicians as well as exercises for graduate students working in the fields of probability theory and mathematical physics. The material is accessible to anyone who has attended a graduate course in probability.

Topological Complexity of Smooth Random Functions

École d'Été de Probabilités de Saint-Flour XXXIX-2009
Author: Robert Adler,Jonathan E. Taylor
Publisher: Springer
ISBN: 3642195806
Category: Mathematics
Page: 122
View: 4817

Continue Reading →

These notes, based on lectures delivered in Saint Flour, provide an easy introduction to the authors’ 2007 Springer monograph “Random Fields and Geometry.” While not as exhaustive as the full monograph, they are also less exhausting, while still covering the basic material, typically at a more intuitive and less technical level. They also cover some more recent material relating to random algebraic topology and statistical applications. The notes include an introduction to the general theory of Gaussian random fields, treating classical topics such as continuity and boundedness. This is followed by a quick review of geometry, both integral and Riemannian, with an emphasis on tube formulae, to provide the reader with the material needed to understand and use the Gaussian kinematic formula, the main result of the notes. This is followed by chapters on topological inference and random algebraic topology, both of which provide applications of the main results.

Multiparameter Processes

An Introduction to Random Fields
Author: Davar Khoshnevisan
Publisher: Springer Science & Business Media
ISBN: 0387216316
Category: Mathematics
Page: 584
View: 5160

Continue Reading →

Self-contained presentation: from elementary material to state-of-the-art research; Much of the theory in book-form for the first time; Connections are made between probability and other areas of mathematics, engineering and mathematical physics

New Trends in Discrete and Computational Geometry


Author: Janos Pach
Publisher: Springer Science & Business Media
ISBN: 3642580432
Category: Mathematics
Page: 340
View: 3744

Continue Reading →

Discrete and computational geometry are two fields which in recent years have benefitted from the interaction between mathematics and computer science. The results are applicable in areas such as motion planning, robotics, scene analysis, and computer aided design. The book consists of twelve chapters summarizing the most recent results and methods in discrete and computational geometry. All authors are well-known experts in these fields. They give concise and self-contained surveys of the most efficient combinatorical, probabilistic and topological methods that can be used to design effective geometric algorithms for the applications mentioned above. Most of the methods and results discussed in the book have not appeared in any previously published monograph. In particular, this book contains the first systematic treatment of epsilon-nets, geometric tranversal theory, partitions of Euclidean spaces and a general method for the analysis of randomized geometric algorithms. Apart from mathematicians working in discrete and computational geometry this book will also be of great use to computer scientists and engineers, who would like to learn about the most recent results.

Stochastic Geometry, Spatial Statistics and Random Fields

Models and Algorithms
Author: Volker Schmidt
Publisher: Springer
ISBN: 3319100645
Category: Mathematics
Page: 464
View: 5734

Continue Reading →

This volume is an attempt to provide a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, with special emphasis placed on fundamental classes of models and algorithms as well as on their applications, e.g. in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R which are widely used in the mathematical community. It can be seen as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered with a focus on asymptotic methods.

Mathematics of Random Phenomena

Random Vibrations of Mechanical Structures
Author: P. Krée,C. Soize
Publisher: Springer Science & Business Media
ISBN: 9400947704
Category: Science
Page: 438
View: 5309

Continue Reading →

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes.

Topological Complexity of Smooth Random Functions

École d'Été de Probabilités de Saint-Flour XXXIX-2009
Author: Robert Adler,Jonathan E. Taylor
Publisher: Springer Science & Business Media
ISBN: 3642195792
Category: Mathematics
Page: 122
View: 1321

Continue Reading →

These notes, based on lectures delivered in Saint Flour, provide an easy introduction to the authors’ 2007 Springer monograph “Random Fields and Geometry.” While not as exhaustive as the full monograph, they are also less exhausting, while still covering the basic material, typically at a more intuitive and less technical level. They also cover some more recent material relating to random algebraic topology and statistical applications. The notes include an introduction to the general theory of Gaussian random fields, treating classical topics such as continuity and boundedness. This is followed by a quick review of geometry, both integral and Riemannian, with an emphasis on tube formulae, to provide the reader with the material needed to understand and use the Gaussian kinematic formula, the main result of the notes. This is followed by chapters on topological inference and random algebraic topology, both of which provide applications of the main results.

Analysis and Geometry of Markov Diffusion Operators


Author: Dominique Bakry,Ivan Gentil,Michel Ledoux
Publisher: Springer Science & Business Media
ISBN: 3319002279
Category: Mathematics
Page: 552
View: 8553

Continue Reading →

The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.

The Geometry of Random Fields


Author: Robert J. Adler
Publisher: SIAM
ISBN: 0898718988
Category: Random fields
Page: 280
View: 9598

Continue Reading →

Originally published in 1981, The Geometry of Random Fields remains an important text for its coverage and exposition of the theory of both smooth and nonsmooth random fields; closed form expressions for the various geometric characteristics of the excursion sets of smooth, stationary, Gaussian random fields over N-dimensional rectangles; descriptions of the local behavior of random fields in the neighborhoods of high maxima; and a treatment of the Markov property for Gaussian fields. Audience: researchers in probability and statistics, with no prior knowledge of geometry required. Since the book was originally published it has become a standard reference in areas of physical oceanography, cosmology, and neuroimaging. It is written at a level accessible to nonspecialists, including advanced undergraduates and early graduate students.

Schrödinger Operators

With Application to Quantum Mechanics and Global Geometry
Author: Hans L. Cycon,Richard G. Froese,Werner Kirsch,Barry Simon
Publisher: Springer
ISBN: 3540775226
Category: Science
Page: 319
View: 6415

Continue Reading →

A complete understanding of Schrödinger operators is a necessary prerequisite for unveiling the physics of nonrelativistic quanturn mechanics. Furthermore recent research shows that it also helps to deepen our insight into global differential geometry. This monograph written for both graduate students and researchers summarizes and synthesizes the theory of Schrödinger operators emphasizing the progress made in the last decade by Lieb, Enss, Witten and others. Besides general properties, the book covers, in particular, multiparticle quantum mechanics including bound states of Coulomb systems and scattering theory, quantum mechanics in constant electric and magnetic fields, Schrödinger operators with random and almost periodic potentials and, finally, Schrödinger operator methods in differential geometry to prove the Morse inequalities and the index theorem.

Brownian Motion, Obstacles and Random Media


Author: Alain-Sol Sznitman
Publisher: Springer Science & Business Media
ISBN: 3662112817
Category: Mathematics
Page: 357
View: 1217

Continue Reading →

This book provides an account for the non-specialist of the circle of ideas, results and techniques, which grew out in the study of Brownian motion and random obstacles. It also includes an overview of known results and connections with other areas of random media, taking a highly original and personal approach throughout.

Random Heterogeneous Materials

Microstructure and Macroscopic Properties
Author: Salvatore Torquato
Publisher: Springer Science & Business Media
ISBN: 9780387951676
Category: Mathematics
Page: 703
View: 6356

Continue Reading →

This accessible text presents a unified approach of treating the microstructure and effective properties of heterogeneous media. Part I deals with the quantitative characterization of the microstructure of heterogeneous via theoretical methods; Part II treats a wide variety of effective properties of heterogeneous materials and how they are linked to the microstructure, accomplished by using rigorous methods.

Information Geometry and Population Genetics

The Mathematical Structure of the Wright-Fisher Model
Author: Julian Hofrichter,Jürgen Jost,Tat Dat Tran
Publisher: Springer
ISBN: 3319520458
Category: Mathematics
Page: 320
View: 2628

Continue Reading →

The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.

Algebraic Geometry


Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category: Mathematics
Page: 496
View: 5026

Continue Reading →

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Applications of Contact Geometry and Topology in Physics


Author: Arkady L Kholodenko
Publisher: World Scientific
ISBN: 9814412104
Category: Mathematics
Page: 492
View: 3902

Continue Reading →

Although contact geometry and topology is briefly discussed in V I Arnol'd's book “Mathematical Methods of Classical Mechanics ”(Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges “An Introduction to Contact Topology” (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph “Contact Geometry and Nonlinear Differential Equations” (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau–Lifshitz (L–L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L–L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L–L course some problems/exercises are formulated along the way and, again as in the L–L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L–L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text. Contents:Motivation and BackgroundFrom Ideal Magnetohydrodynamics to String and Knot TheoryAll About and Around Woltjer's TheoremTopologically Massive Gauge Theories and Force-Free FieldsContact Geometry and PhysicsSub-Riemannian Geometry, Heisenberg Manifolds and Quantum Mechanics of Landau LevelsAbrikosov Lattices, TGB Phases in Liquid Crystals and Heisenberg GroupSub-Riemannian Geometry, Spin Dynamics and Quantum-Classical Optimal ControlFrom Contact Geometry to Contact TopologyClosing Remarks:The Unreasonable Effectivenessof Contact Geometry and Topology in Physical SciencesAppendices:Heisenberg Group in the Context of Sub-Riemannian Geometry and Optimal ControlSub-Riemannian Dynamics of Josephson JunctionsQuantum Computers and Quantum Random WalksThe Measurement Protocol. Geometry and Topology of Entanglements Readership: Students in applied mathematics and theoretical physics. Keywords:Force-Free Fields;Contact and Sub-Riemannian Geometry;Optimal Control;Theoretical PhysicsKey Features:This book is the world's first book on contact/sub-Riemannian geometry and topology for physicistsUnlike books discussing mathematical methods for physicists, this book discusses physical problems first and only then uses new mathematics to solve these problems. Problems are selected from practically all branches of theoretical physicsThis is done with the purpose of demonstrating that contact geometry should be looked upon as a universal language/technical tool of theoretical physicsReviews: “This book is written in the style of the well-known Landau-Lifshitz multivolume course in theoretical physics and its prime goal, as the author puts it, is to show the diversity of applications of contact geometry and topology. I enjoyed reading this book, in which the author allows readers to see for themselves “the same forest behind different kinds of trees”. I strongly recommend this book to interested readers.” MathSciNet

Asymptotic Geometric Analysis, Part I


Author: Shiri Artstein-Avidan, Apostolos Giannopoulos, Vitali D. Milman
Publisher: American Mathematical Soc.
ISBN: 1470421933
Category: Functional analysis
Page: 451
View: 2447

Continue Reading →

The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomenon", one of the most powerful tools of the theory, responsible for many counterintuitive results. A central theme in this book is the interaction of randomness and pattern. At first glance, life in high dimension seems to mean the existence of multiple "possibilities", so one may expect an increase in the diversity and complexity as dimension increases. However, the concentration of measure and effects caused by convexity show that this diversity is compensated and order and patterns are created for arbitrary convex bodies in the mixture caused by high dimensionality. The book is intended for graduate students and researchers who want to learn about this exciting subject. Among the topics covered in the book are convexity, concentration phenomena, covering numbers, Dvoretzky-type theorems, volume distribution in convex bodies, and more.

Theory of Random Sets


Author: Ilya Molchanov
Publisher: Springer
ISBN: 144717349X
Category: Mathematics
Page: 678
View: 1552

Continue Reading →

This monograph, now in a thoroughly revised second edition, offers the latest research on random sets. It has been extended to include substantial developments achieved since 2005, some of them motivated by applications of random sets to econometrics and finance. The present volume builds on the foundations laid by Matheron and others, including the vast advances in stochastic geometry, probability theory, set-valued analysis, and statistical inference. It shows the various interdisciplinary relationships of random set theory within other parts of mathematics, and at the same time fixes terminology and notation that often vary in the literature, establishing it as a natural part of modern probability theory and providing a platform for future development. It is completely self-contained, systematic and exhaustive, with the full proofs that are necessary to gain insight. Aimed at research level, Theory of Random Sets will be an invaluable reference for probabilists; mathematicians working in convex and integral geometry, set-valued analysis, capacity and potential theory; mathematical statisticians in spatial statistics and uncertainty quantification; specialists in mathematical economics, econometrics, decision theory, and mathematical finance; and electronic and electrical engineers interested in image analysis.