Python in a Nutshell

A Desktop Quick Reference
Author: Alex Martelli
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449379100
Category: Computers
Page: 738
View: 3543

Continue Reading →

This book offers Python programmers one place to look when they needhelp remembering or deciphering the syntax of this open source languageand its many powerful but scantily documented modules. Thiscomprehensive reference guide makes it easy to look up the mostfrequently needed information--not just about the Python languageitself, but also the most frequently used parts of the standard libraryand the most important third-party extensions. Ask any Python aficionado and you'll hear that Python programmers haveit all: an elegant object-oriented language with readable andmaintainable syntax, that allows for easy integration with componentsin C, C++, Java, or C#, and an enormous collection of precoded standardlibrary and third-party extension modules. Moreover, Python is easy tolearn, yet powerful enough to take on the most ambitious programmingchallenges. But what Python programmers used to lack is a concise andclear reference resource, with the appropriate measure of guidance inhow best to use Python's great power. Python in aNutshell fills this need. Python in a Nutshell, Second Edition covers morethan the language itself; it also deals with the mostfrequently used parts of the standard library, and the most popular andimportant third party extensions. Revised and expanded forPython 2.5, this book now contains the gory details of Python's newsubprocess module and breaking news about Microsoft's newIronPython project. Our "Nutshell" format fits Python perfectly bypresenting the highlights of the most important modules and functionsin its standard library, which cover over 90% of your practicalprogramming needs. This book includes: A fast-paced tutorial on the syntax of the Python language An explanation of object-oriented programming in Python Coverage of iterators, generators, exceptions, modules,packages, strings, and regular expressions A quick reference for Python's built-in types and functionsand key modules Reference material on important third-party extensions,such as Numeric and Tkinter Information about extending and embedding Python Python in a Nutshell provides a solid,no-nonsense quick reference to information that programmers rely on themost. This book will immediately earn its place in any Pythonprogrammer's library. Praise for the First Edition: "In a nutshell, Python in a Nutshell serves oneprimary goal: to act as an immediately accessible goal for the Pythonlanguage. True, you can get most of the same core information that ispresented within the covers of this volume online, but this willinvariably be broken into multiple files, and in all likelihood lackingthe examples or the exact syntax description necessary to trulyunderstand a command." --Richard Cobbett, Linux Format "O'Reilly has several good books, of which Python in aNutshell by Alex Martelli is probably the best for giving yousome idea of what Python is about and how to do useful things with it." --Jerry Pournelle, Byte Magazine

Python in a Nutshell


Author: Alex Martelli
Publisher: "O'Reilly Media, Inc."
ISBN: 9780596001889
Category: Computers
Page: 636
View: 2682

Continue Reading →

Demonstrates the programming language's strength as a Web development tool, covering syntax, data types, built-ins, the Python standard module library, and real world examples.

Python kurz & gut


Author: Mark Lutz
Publisher: O'Reilly Germany
ISBN: 3955617718
Category: Computers
Page: 280
View: 3254

Continue Reading →

Die objektorientierte Sprache Python eignet sich hervorragend zum Schreiben von Skripten, Programmen und Prototypen. Sie ist frei verfügbar, leicht zu lernen und zwischen allen wichtigen Plattformen portabel, einschließlich Linux, Unix, Windows und Mac OS. Damit Sie im Programmieralltag immer den Überblick behalten, sind die verschiedenen Sprachmerkmale und Elemente in Python – kurz & gut übersichtlich zusammengestellt. Für Auflage 5 wurde die Referenz komplett überarbeitet, erweitert und auf den neuesten Stand gebracht, so dass sie die beiden aktuellen Versionen 2.7 und 3.4 berücksichtigt. Python – kurz & gut behandelt unter anderem: Eingebaute Typen wie Zahlen, Listen, Dictionarys u.v.a.; nweisungen und Syntax für Entwicklung und Ausführung von Objekten; Die objektorientierten Entwicklungstools in Python; Eingebaute Funktionen, Ausnahmen und Attribute; pezielle Methoden zur Operatorenüberladung; Weithin benutzte Standardbibliotheksmodule und Erweiterungen; Kommandozeilenoptionen und Entwicklungswerkzeuge. Mark Lutz stieg 1992 in die Python-Szene ein und ist seitdem als aktiver Pythonista bekannt. Er gibt Kurse, hat zahlreiche Bücher geschrieben und mehrere Python-Systeme programmiert.

Einführung in Python


Author: Mark Lutz,David Ascher,Dinu C. Gherman
Publisher: O'Reilly Germany
ISBN: 3897214881
Category: Python (Computer program language)
Page: 624
View: 7792

Continue Reading →

R in a Nutshell


Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 3897216507
Category: Computers
Page: 768
View: 3353

Continue Reading →

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython
Author: Wes McKinney
Publisher: O'Reilly
ISBN: 3960102143
Category: Computers
Page: 542
View: 4566

Continue Reading →

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Reguläre Ausdrücke


Author: Jeffrey E. F. Friedl
Publisher: O'Reilly Germany
ISBN: 3897217902
Category: Computers
Page: 556
View: 5071

Continue Reading →

Reguläre Ausdrücke sind ein leistungsstarkes Mittel zur Verarbeitung von Texten und Daten. Wenn Sie reguläre Ausdrücke noch nicht kennen, wird Ihnen dieses Buch eine ganz neue Welt eröffnen. Aufgrund der ausgesprochen detaillierten und tiefgründigen Behandlung des Themas ist dieses Buch aber auch für Experten eine wahre Trouvaille. Die neue Auflage dieses anerkannten Standardwerks behandelt jetzt auch die Unterstützung regulärer Ausdrücke in PHP sowie Suns java.util.regex. Der klare und unterhaltsame Stil des Buchs hat schon Tausenden von Programmierern das an sich trockene Thema nähergebracht, und mit den vielen Beispielen zu Problemen aus dem Programmieralltag ist Reguläre Ausdrücke eine praktische Hilfe bei der täglichen Arbeit. Reguläre Ausdrücke sind überall Sie sind standardmäßig in Perl, PHP, Java, Python, Ruby, MySQL, VB.NET und C# (und allen Sprachen des .NET-Frameworks) sowie anderen Programmiersprachen und Werkzeugen eingebaut. Dieses Buch geht detailliert auf die Unterschiede und Gemeinsamkeiten bei der Behandlung regulärer Ausdrücke in diesen Sprachen und Werkzeugen ein. Besonders ausführlich werden die Regex-Features von Perl, Java, PHP und .NET behandelt. Reguläre Ausdrücke sind mächtig Reguläre Ausdrücke sind sehr leistungsfähig und flexibel. Dennoch bleibt ihre Anwendung oft unter ihren Möglichkeiten. Mit regulären Ausdrücken können Sie komplexe und subtile Textbearbeitungsprobleme lösen, von denen Sie vielleicht nie vermutet hätten, daß sie sich automatisieren lassen. Reguläre Ausdrücke ersparen Ihnen Arbeit und Ärger, und viele Probleme lassen sich mit ihnen auf elegante Weise lösen. Reguläre Ausdrücke sind anspruchsvoll Was in der Hand von Experten eine sehr nützliche Fähigkeit ist, kann sich als Stolperstein für Ungeübte herausstellen. Dieses Buch zeigt einen Weg durch das unwägbare Gebiet und hilft Ihnen, selbst Experte zu werden. Wenn Sie die regulären Ausdrücke beherrschen, werden sie zu einem unverzichtbaren Teil Ihres Werkzeugkastens. Sie werden sich fragen, wie Sie je ohne sie arbeiten konnten.

Programmieren mit C# 3.0


Author: Jesse Liberty,Donald Xie,Thomas Demming
Publisher: O'Reilly Germany
ISBN: 3897218593
Category: C# (Computer program language)
Page: 612
View: 4508

Continue Reading →

Maschinelles Lernen

Grundlagen und Algorithmen in Python
Author: Jörg Frochte
Publisher: Carl Hanser Verlag GmbH Co KG
ISBN: 3446459979
Category: Technology & Engineering
Page: 406
View: 3227

Continue Reading →

Maschinelles Lernen ist ein interdisziplinäres Fach, das die Bereiche Informatik, Mathematik und das jeweilige Anwendungsgebiet zusammenführt. In diesem Buch werden alle drei Teilgebiete gleichermaßen berücksichtigt: - Es wird demonstriert, wie man die Algorithmen des maschinellen Lernens verwendet und der Hintergrund geliefert, um zu verstehen, wie und warum diese Algorithmen funktionieren. - Ebenfalls enthalten ist ein kompakter Kickstart zur Verwendung von Python 3 und seinem Ökosystem im Umfeld des maschinellen Lernens. - Die Algorithmen werden zum besseren Verständnis und praktischen Einsatz anschaulich mittels NumPy und SciPy umgesetzt. - Für die Support Vector Machines und das Deep Learning wird auf scikit-learn bzw. Keras zurückgegriffen. - Es werden verschiedene Methoden des überwachten, unüberwachten und bestärkenden Lernens besprochen, u.a. Random Forest, DBSCAN und Q-Learning. Vorausgesetzt werden Kenntnisse in objektorientierter Programmierung und Basiswissen der Hochschulmathematik. Die nötige Mathematik wird eingebettet im Buch präsentiert und die Theorie direkt in Python-Code umgesetzt. Das Buch ist ideal für Studierende der Informatik, Mechatronik, Elektrotechnik und der angewandten Statistik/Data Science sowie für Ingenieure und Informatiker in der Praxis.

Java in a nutshell

deutsche Ausgabe für Java 1.4
Author: David Flanagan
Publisher: O'Reilly Germany
ISBN: 9783897213326
Category: Java (Computer program language)
Page: 1084
View: 2763

Continue Reading →

C in a Nutshell


Author: Peter Prinz,Tony Crawford
Publisher: O'Reilly Germany
ISBN: 9783897213449
Category: C (Computer program language)
Page: 602
View: 4788

Continue Reading →

Programmieren lernen mit Python


Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868999477
Category: Computers
Page: 312
View: 6091

Continue Reading →

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Jenseits reiner Theorie: Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen: Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält. Starten Sie durch: Beginnen Sie mit den Grundlagen der Programmierung und den verschiedenen Programmierkonzepten, und lernen Sie, wie ein Informatiker zu programmieren.

Mit Java programmieren lernen für Dummies


Author: Barry A. Burd
Publisher: John Wiley & Sons
ISBN: 3527691898
Category: Computers
Page: 463
View: 2750

Continue Reading →

Steigen Sie mit diesem Buch in die Welt des Programmierens ein und zwar mit der beliebten Programmiersprache Java! Schritt fï¿1⁄2r Schritt werden Sie mit den Grundlagen, wie zum Beispiel Variablen, Schleifen und objektorientierter Programmierung, vertraut gemacht, probieren viele anschauliche Beispiele aus und schreiben Ihr erstes eigenes Programm. Dieses Buch steht Ihnen bei allen Herausforderungen jederzeit mit hilfreichen Tipps und Lï¿1⁄2sungsvorschlï¿1⁄2gen zur Seite, sodass Sie fï¿1⁄2r Ihren Weg zum Programmierer optimal gerï¿1⁄2stet sind!

Python von Kopf bis Fuß

Aktuell zu Python 3
Author: Paul Barry
Publisher: O'Reilly
ISBN: 3960101368
Category: Computers
Page: 620
View: 7625

Continue Reading →

Was lernen Sie in diesem Buch? Haben Sie sich schon einmal gewünscht, Sie könnten mit nur einem Buch Python richtig lernen? Mit Python von Kopf bis Fuß schaffen Sie es! Durch die ausgefeilte Von-Kopf-bis-Fuß-Didaktik, die viel mehr als die bloße Syntax und typische How-to-Erklärungen bietet, wird es sogar zum Vergnügen. Python-Grundlagen wie Datenstrukturen und Funktionen verstehen Sie hier schnell, und dann geht es auch schon weiter: Sie programmieren Ihre eigene Web-App, erkunden Datenbank-Management, Ausnahmebehandlung und die Verarbeitung von Daten. Da Python häufig im Data-Science-Umfeld eingesetzt wird, haben in der 2. Auflage diejenigen Techniken ein stärkeres Gewicht bekommen, die in der Welt der Big Data genutzt werden. Wieso sieht dieses Buch so anders aus? In diesem Buch sind die neuesten Erkenntnisse der Kognitionswissenschaft und der Lerntheorie eingeflossen, um Ihnen das Lernen so einfach wie möglich zu machen. Statt einschläfernder Bleiwüsten verwendet dieses Buch eine Vielzahl von Abbildungen und Textstilen, die Ihnen das Wissen direkt ins Hirn spielen – und zwar so, dass es sitzt.

Ruby in a Nutshell


Author: Yukihiro Matsumoto
Publisher: "O'Reilly Media, Inc."
ISBN: 0596002149
Category: Computers
Page: 204
View: 2347

Continue Reading →

Introduces Ruby's object-oriented programming capabilities, detailing command-line options, syntax, built-in variables, functions, commonly used classes and modules, environment variables, operators, methods, and security.

Statistik-Workshop für Programmierer


Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Category: Computers
Page: 160
View: 5730

Continue Reading →

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.