**Author**: Zhong-Qi Ma,Xiao-Yan Gu

**Publisher:**World Scientific

**ISBN:**9789812388339

**Category:**Science

**Page:**464

**View:**2173

Skip to content
# Search Results for: problems-and-solutions-in-group-theory-for-physicists

**Author**: Zhong-Qi Ma,Xiao-Yan Gu

**Publisher:** World Scientific

**ISBN:** 9789812388339

**Category:** Science

**Page:** 464

**View:** 2173

This book is aimed at graduate students and young researchers in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory. This book is also suitable for some graduate students in theoretical chemistry.
*Problems and Solutions*

**Author**: Michael Aivazis

**Publisher:** World Scientific

**ISBN:** 9789810204860

**Category:** Science

**Page:** 111

**View:** 5313

This solutions booklet is a supplement to the text book 'Group Theory in Physics' by Wu-Ki Tung. It will be useful to lecturers and students taking the subject as detailed solutions are given.

**Author**: Zhongqi Ma

**Publisher:** World Scientific

**ISBN:** 9812771417

**Category:** Science

**Page:** 491

**View:** 1142

This textbook explains the fundamental concepts and techniques of group theory by making use of language familiar to physicists. Application methods to physics are emphasized. New materials drawn from the teaching and research experience of the author are included. This book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry.

**Author**: Willi-Hans Steeb,Igor Tanski,Yorick Hardy

**Publisher:** World Scientific Publishing Company

**ISBN:** 9813104112

**Category:** Mathematics

**Page:** 352

**View:** 9125

The book presents examples of important techniques and theorems for Groups, Lie groups and Lie algebras. This allows the reader to gain understandings and insights through practice. Applications of these topics in physics and engineering are also provided. The book is self-contained. Each chapter gives an introduction to the topic.
*An Introduction to Space-Time and Internal Symmetries*

**Author**: Giovanni Costa,Gianluigi Fogli

**Publisher:** Springer

**ISBN:** 3642154824

**Category:** Science

**Page:** 291

**View:** 6082

Symmetries, coupled with the mathematical concept of group theory, are an essential conceptual backbone in the formulation of quantum field theories capable of describing the world of elementary particles. This primer is an introduction to and survey of the underlying concepts and structures needed in order to understand and handle these powerful tools. Specifically, in Part I of the book the symmetries and related group theoretical structures of the Minkowskian space-time manifold are analyzed, while Part II examines the internal symmetries and their related unitary groups, where the interactions between fundamental particles are encoded as we know them from the present standard model of particle physics. This book, based on several courses given by the authors, addresses advanced graduate students and non-specialist researchers wishing to enter active research in the field, and having a working knowledge of classical field theory and relativistic quantum mechanics. Numerous end-of-chapter problems and their solutions will facilitate the use of this book as self-study guide or as course book for topical lectures.

**Author**: Morton Hamermesh

**Publisher:** Courier Corporation

**ISBN:** 9780486661810

**Category:** Science

**Page:** 509

**View:** 2453

"A remarkably intelligible survey . . . well organized, well written and very clear throughout." — Mathematical Reviews This excellent text, long considered one of the best-written, most skillful expositions of group theory and its physical applications, is directed primarily to advanced undergraduate and graduate students in physics, especially quantum physics. No knowledge of group theory is assumed, but the reader is expected to be familiar with quantum mechanics. And while much of the book concerns theory, readers will nevertheless find a large number of physical applications in the fields of crystallography, molecular theory, and atomic and nuclear physics. The first seven chapters of the book are concerned with finite groups, focusing on the central role of the symmetric group. This section concludes with a chapter dealing with the problem of determining group characters, as it discusses Young tableaux, Yamanouchi symbols, and the method of Hund. The remaining five chapters discuss continuous groups, particularly Lie groups, with the final chapter devoted to the ray representation of Lie groups. The author, Professor Emeritus of Physics at the University of Minnesota, has included a generous selection of problems. They are inserted throughout the text at the place where they naturally arise, making the book ideal for self-study as well as for classroom assignment. 77 illustrations. "A very welcome addition to [the] literature. . . . I would warmly recommend the book to all serious students of Group Theory as applied to Physics." — Contemporary Physics. Index. Bibliography. Problems. Tables.

**Author**: Wu-Ki Tung

**Publisher:** World Scientific

**ISBN:** 9789971966577

**Category:** Science

**Page:** 344

**View:** 3282

An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems.Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry.Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained.A set of problems and solutions has been published in a separate booklet.

**Author**: Nadir Jeevanjee

**Publisher:** Birkhäuser

**ISBN:** 3319147943

**Category:** Science

**Page:** 305

**View:** 8903

The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews
*(With Solutions)*

**Author**: A Di Giacomo,G Paffuti,P Rossi

**Publisher:** World Scientific Publishing Company

**ISBN:** 9813103272

**Category:** Science

**Page:** 408

**View:** 8961

This book is a collection of more than 100 problems selected from the examination questions for a graduate course in theoretical physics. Every problem is discussed and solved in detail. A wide range of subjects is covered, from potential scattering to atomic, nuclear and high energy physics. Special emphasis is devoted to relativistic quantum mechanics and its application to elementary processes: S-matrix theory, the role of discrete symmetries, the use of Feynman diagrams and elementary perturbative quantum field theory. The course attaches great importance to recitation sessions, where thorough problem solving becomes a true test of mastery of theoretical background. The authors are experts in their fields. A Di Giacomo taught “theoretical physics” for about 20 years. G Paffuti and P Rossi held recitations for several years. More recently, Haris Panagopoulos followed suit. He assisted the authors in preparing this English version translated from the Italian. For physicists and especially for graduate and advanced undergraduate students in theoretical physics, this book is a positive guide in the intricacies of problem-solving. A further feature that adds practical value to this book is that most problems correspond to realistic physical processes and their numerical results are compared to experimental values whenever possible. Request Inspection Copy

**Author**: Ken J. Barnes

**Publisher:** Taylor & Francis

**ISBN:** 1439895201

**Category:** Science

**Page:** 255

**View:** 831

Based on the author’s well-established courses, Group Theory for the Standard Model of Particle Physics and Beyond explores the use of symmetries through descriptions of the techniques of Lie groups and Lie algebras. The text develops the models, theoretical framework, and mathematical tools to understand these symmetries. After linking symmetries with conservation laws, the book works through the mathematics of angular momentum and extends operators and functions of classical mechanics to quantum mechanics. It then covers the mathematical framework for special relativity and the internal symmetries of the standard model of elementary particle physics. In the chapter on Noether’s theorem, the author explains how Lagrangian formalism provides a natural framework for the quantum mechanical interpretation of symmetry principles. He then examines electromagnetic, weak, and strong interactions; spontaneous symmetry breaking; the elusive Higgs boson; and supersymmetry. He also introduces new techniques based on extending space–time into dimensions described by anticommuting coordinates. Designed for graduate and advanced undergraduate students in physics, this text provides succinct yet complete coverage of the group theory of the symmetries of the standard model of elementary particle physics. It will help students understand current knowledge about the standard model as well as the physics that potentially lies beyond the standard model.
*An Introduction for Physicists, Engineers and Chemists*

**Author**: Robert Gilmore

**Publisher:** Cambridge University Press

**ISBN:** 113946907X

**Category:** Science

**Page:** N.A

**View:** 5500

Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.

**Author**: Ernest M. Loebl

**Publisher:** Academic Press

**ISBN:** 1483263789

**Category:** Mathematics

**Page:** 326

**View:** 8102

Group Theory and its Applications, Volume II covers the two broad areas of applications of group theory, namely, all atomic and molecular phenomena, as well as all aspects of nuclear structure and elementary particle theory. This volume contains five chapters and begins with the representation and tensor operators of the unitary groups. The next chapter describes wave equations, both Schrödinger’s and Dirac’s for a wide variety of potentials. These topics are followed by discussions of the applications of dynamical groups in dealing with bound-state problems of atomic and molecular physics. A chapter explores the connection between the physical constants of motion and the unitary group of the Hamiltonian, the symmetry adaptation with respect to arbitrary finite groups, and the Dixon method for computing irreducible characters without the occurrence of numerical errors. The last chapter deals with the study of the extension, representation, and applications of Galilei group. This book will prove useful to mathematicians, practicing engineers, and physicists.
*International Series of Monographs in Pure and Applied Mathematics*

**Author**: B. M. Budak,A. A. Samarskii,A. N. Tikhonov

**Publisher:** Elsevier

**ISBN:** 1483184862

**Category:** Science

**Page:** 782

**View:** 6971

A Collection of Problems on Mathematical Physics is a translation from the Russian and deals with problems and equations of mathematical physics. The book contains problems and solutions. The book discusses problems on the derivation of equations and boundary condition. These Problems are arranged on the type and reduction to canonical form of equations in two or more independent variables. The equations of hyperbolic type concerns derive from problems on vibrations of continuous media and on electromagnetic oscillations. The book considers the statement and solutions of boundary value problems pertaining to equations of parabolic types when the physical processes are described by functions of two, three or four independent variables such as spatial coordinates or time. The book then discusses dynamic problems pertaining to the mechanics of continuous media and problems on electrodynamics. The text also discusses hyperbolic and elliptic types of equations. The book is intended for students in advanced mathematics and physics, as well as, for engineers and workers in research institutions.
*An Introduction to Group Theory for Particle Physicists*

**Author**: Stephen Haywood

**Publisher:** World Scientific

**ISBN:** 1848166591

**Category:** Science

**Page:** 152

**View:** 3665

This book will explain how group theory underpins some of the key features of particle physics. It will examine symmetries and conservation laws in quantum mechanics and relate these to groups of transformations. Group theory provides the language for describing how particles (and in particular, their quantum numbers) combine. This provides understanding of hadronic physics as well as physics beyond the Standard Model. The symmetries of the Standard Model associated with the Electroweak and Strong (QCD) forces are described by the groups U(1), SU(2) and SU(3). The properties of these groups are examined and the relevance to particle physics is discussed.Stephen Haywood, author of Symmetries And Conservation Laws In Particle Physics, explains how his book can help experimental physicists and PhD students understand group theory and particle physics in our new video View the interview at http: //www.youtube.com/watch'v=jbQk78TBLS

**Author**: A. Zee

**Publisher:** Princeton University Press

**ISBN:** 1400881188

**Category:** Science

**Page:** 632

**View:** 6293

Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)

**Author**: George Turrell

**Publisher:** Elsevier

**ISBN:** 0080511279

**Category:** Mathematics

**Page:** 424

**View:** 7632

Chemistry and physics share a common mathematical foundation. From elementary calculus to vector analysis and group theory, Mathematics for Chemistry and Physics aims to provide a comprehensive reference for students and researchers pursuing these scientific fields. The book is based on the authors many classroom experience. Designed as a reference text, Mathematics for Chemistry and Physics will prove beneficial for students at all university levels in chemistry, physics, applied mathematics, and theoretical biology. Although this book is not computer-based, many references to current applications are included, providing the background to what goes on "behind the screen" in computer experiments.

**Author**: Robert Gilmore

**Publisher:** Courier Corporation

**ISBN:** 0486131564

**Category:** Mathematics

**Page:** 608

**View:** 2096

This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.

**Author**: H.F Jones

**Publisher:** CRC Press

**ISBN:** 9781420050295

**Category:** Mathematics

**Page:** 340

**View:** 505

Illustrating the fascinating interplay between physics and mathematics, Groups, Representations and Physics, Second Edition provides a solid foundation in the theory of groups, particularly group representations. For this new, fully revised edition, the author has enhanced the book's usefulness and widened its appeal by adding a chapter on the Cartan-Dynkin treatment of Lie algebras. This treatment, a generalization of the method of raising and lowering operators used for the rotation group, leads to a systematic classification of Lie algebras and enables one to enumerate and construct their irreducible representations. Taking an approach that allows physics students to recognize the power and elegance of the abstract, axiomatic method, the book focuses on chapters that develop the formalism, followed by chapters that deal with the physical applications. It also illustrates formal mathematical definitions and proofs with numerous concrete examples.
*A Guided Tour for Graduate Students*

**Author**: Michael Stone,Paul Goldbart

**Publisher:** Cambridge University Press

**ISBN:** 1139480618

**Category:** Science

**Page:** N.A

**View:** 4944

An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.

**Author**: A. W. Joshi

**Publisher:** New Age International

**ISBN:** 9788122409758

**Category:** Group theory

**Page:** 305

**View:** 4974

The Mathematical Study Of Group Theory Was Initiated In The Early Nineteenth Century By Such Mathematicians As Gauss, Cauchy, Abel, Hamilton, Galois, Cayley, And Many Others. However, The Advantages Of Group Theory In Physics Were Not Recognized Till 1925 When It Was Applied For Formal Study Of Theoretical Foundations Of Quantum Mechanics, Atomic Structures And Spectra By, To Name A Few, H A Bethe, E P Wigner, Etc. It Has Now Become Indispensable In Several Branches Of Physics And Physical Chemistry.Dr. Joshi Develops The Mathematics Of Group Theory And Then Goes On To Present Its Applications To Quantum Mechanics, Crystallography, And Solid State Physics. For Proper Comprehension Of Representation Theory, He Has Covered Thoroughly Such Diverse But Relevant Topics As Hilbert Spaces, Function Spaces, Operators, And Direct Sum And Product Of Matrices. He Often Proceeds From The Particular To The General So That The Beginning Student Does Not Have An Impression That Group Theory Is Merely A Branch Of Abstract Mathematics. Various Concepts Have Been Explained Consistently By The Use Of The C4V. Besides, It Contains An Improved And More General Proof Of The Schurs First Lemma And An Interpretation Of The Orthogonality Theorem In The Language Of Vector Spaces (Chapter 3).Throughout The Text The Author Gives Attention To Details And Avoids Complicated Notation. This Is A Valuable Book For Senior Students And Researchers In Physics And Physical Chemistry. A Thorough Understanding Of The Methodology And Results Contained In This Book Will Provide The Reader Sound Theoretical Foundations For Advanced Study Of Quantum Mechanics, Solid State Physics And Atomic And Particle Physics To Help Students A Flow-Chart Explaining Step By Step The Method Of Determining A Parallel-Running Example Illustrating The Procedure In Full Details Have Been Included. An Appendix On Mappings And Functions Has Also Been Added.

Full PDF Download Free

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy