**Author**: Peter Olofsson,Mikael Andersson

**Publisher:**John Wiley & Sons

**ISBN:**0470889748

**Category:**Business & Economics

**Page:**558

**View:**8295

Skip to content
# Search Results for: probability-statistics-and-stochastic-processes

**Author**: Peter Olofsson,Mikael Andersson

**Publisher:** John Wiley & Sons

**ISBN:** 0470889748

**Category:** Business & Economics

**Page:** 558

**View:** 8295

"This book provides a unique and balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. The Second Edition features new coverage of analysis of variance (ANOVA), consistency and efficiency of estimators, asymptotic theory for maximum likelihood estimators, empirical distribution function and the Kolmogorov-Smirnov test, general linear models, multiple comparisons, Markov chain Monte Carlo (MCMC), Brownian motion, martingales, and renewal theory. Many new introductory problems and exercises have also been added. This book combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The book begins with three chapters that develop probability theory and introduce the axioms of probability, random variables, and joint distributions. The next two chapters introduce limit theorems and simulation. Also included is a chapter on statistical inference with a focus on Bayesian statistics, which is an important, though often neglected, topic for undergraduate-level texts. Markov chains in discrete and continuous time are also discussed within the book. More than 400 examples are interspersed throughout to help illustrate concepts and theory and to assist readers in developing an intuitive sense of the subject. Readers will find many of the examples to be both entertaining and thought provoking. This is also true for the carefully selected problems that appear at the end of each chapter"--
*Estimation and Prediction*

**Author**: D. Bosq

**Publisher:** Springer Science & Business Media

**ISBN:** 1461217180

**Category:** Mathematics

**Page:** 232

**View:** 8937

This book is devoted to the theory and applications of nonparametic functional estimation and prediction. Chapter 1 provides an overview of inequalities and limit theorems for strong mixing processes. Density and regression estimation in discrete time are studied in Chapter 2 and 3. The special rates of convergence which appear in continuous time are presented in Chapters 4 and 5. This second edition is extensively revised and it contains two new chapters. Chapter 6 discusses the surprising local time density estimator. Chapter 7 gives a detailed account of implementation of nonparametric method and practical examples in economics, finance and physics. Comarison with ARMA and ARCH methods shows the efficiency of nonparametric forecasting. The prerequisite is a knowledge of classical probability theory and statistics. Denis Bosq is Professor of Statistics at the Unviersity of Paris 6 (Pierre et Marie Curie). He is Editor-in-Chief of "Statistical Inference for Stochastic Processes" and an editor of "Journal of Nonparametric Statistics". He is an elected member of the International Statistical Institute. He has published about 90 papers or works in nonparametric statistics and four books.

**Author**: Liliana Blanco Castañeda,Viswanathan Arunachalam,Selvamuthu Dharmaraja

**Publisher:** John Wiley & Sons

**ISBN:** 1118344960

**Category:** Mathematics

**Page:** 614

**View:** 4983

An easily accessible, real-world approach to probability andstochastic processes Introduction to Probability and Stochastic Processes withApplications presents a clear, easy-to-understand treatment ofprobability and stochastic processes, providing readers with asolid foundation they can build upon throughout their careers. Withan emphasis on applications in engineering, applied sciences,business and finance, statistics, mathematics, and operationsresearch, the book features numerous real-world examples thatillustrate how random phenomena occur in nature and how to useprobabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basicconcepts of probability to advanced topics for further study,including Itô integrals, martingales, and sigma algebras.Additional topical coverage includes: Distributions of discrete and continuous random variablesfrequently used in applications Random vectors, conditional probability, expectation, andmultivariate normal distributions The laws of large numbers, limit theorems, and convergence ofsequences of random variables Stochastic processes and related applications, particularly inqueueing systems Financial mathematics, including pricing methods such asrisk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisitemathematics and tables of standard distributions for use inapplications are provided, and plentiful exercises, problems, andsolutions are found throughout. Also, a related website featuresadditional exercises with solutions and supplementary material forclassroom use. Introduction to Probability and StochasticProcesses with Applications is an ideal book for probabilitycourses at the upper-undergraduate level. The book is also avaluable reference for researchers and practitioners in the fieldsof engineering, operations research, and computer science whoconduct data analysis to make decisions in their everyday work.
*Statistics and Random Processes*

**Author**: Hossein Pishro-Nik

**Publisher:** N.A

**ISBN:** 9780990637202

**Category:** Probabilities

**Page:** 746

**View:** 6685

The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.

**Author**: Denis Bosq

**Publisher:** John Wiley & Sons

**ISBN:** 1118586271

**Category:** Mathematics

**Page:** 304

**View:** 2382

Generally, books on mathematical statistics are restricted tothe case of independent identically distributed random variables.In this book however, both this case AND the case of dependentvariables, i.e. statistics for discrete and continuous timeprocesses, are studied. This second case is very important fortoday’s practitioners. Mathematical Statistics and Stochastic Processes is based ondecision theory and asymptotic statistics and contains up-to-dateinformation on the relevant topics of theory of probability,estimation, confidence intervals, non-parametric statistics androbustness, second-order processes in discrete and continuous timeand diffusion processes, statistics for discrete and continuoustime processes, statistical prediction, and complements inprobability. This book is aimed at students studying courses on probability withan emphasis on measure theory and for all practitioners who applyand use statistics and probability on a daily basis.

**Author**: Kai L. Chung

**Publisher:** Springer-Verlag

**ISBN:** 3642670334

**Category:** Mathematics

**Page:** 346

**View:** 9156

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

**Author**: Sheldon M. Ross

**Publisher:** John Wiley & Sons Inc

**ISBN:** N.A

**Category:** Business & Economics

**Page:** 510

**View:** 5574

A nonmeasure theoretic introduction to stochastic processes. Considers its diverse range of applications and provides readers with probabilistic intuition and insight in thinking about problems. This revised edition contains additional material on compound Poisson random variables including an identity which can be used to efficiently compute moments; a new chapter on Poisson approximations; and coverage of the mean time spent in transient states as well as examples relating to the Gibb's sampler, the Metropolis algorithm and mean cover time in star graphs. Numerous exercises and problems have been added throughout the text.

**Author**: Rabi N. Bhattacharya,Edward C. Waymire

**Publisher:** SIAM

**ISBN:** 0898716896

**Category:** Mathematics

**Page:** 184

**View:** 2442

This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. The book features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walks in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. This book is for graduate students in mathematics, statistics, science and engineering, and it may also be used as a reference by professionals in diverse fields whose work involves the application of probability.

**Author**: Y. Rozanov

**Publisher:** Springer Science & Business Media

**ISBN:** 9401104492

**Category:** Mathematics

**Page:** 259

**View:** 3958

Probability Theory, Theory of Random Processes and Mathematical Statistics are important areas of modern mathematics and its applications. They develop rigorous models for a proper treatment for various 'random' phenomena which we encounter in the real world. They provide us with numerous tools for an analysis, prediction and, ultimately, control of random phenomena. Statistics itself helps with choice of a proper mathematical model (e.g., by estimation of unknown parameters) on the basis of statistical data collected by observations. This volume is intended to be a concise textbook for a graduate level course, with carefully selected topics representing the most important areas of modern Probability, Random Processes and Statistics. The first part (Ch. 1-3) can serve as a self-contained, elementary introduction to Probability, Random Processes and Statistics. It contains a number of relatively sim ple and typical examples of random phenomena which allow a natural introduction of general structures and methods. Only knowledge of elements of real/complex analysis, linear algebra and ordinary differential equations is required here. The second part (Ch. 4-6) provides a foundation of Stochastic Analysis, gives information on basic models of random processes and tools to study them. Here a familiarity with elements of functional analysis is necessary. Our intention to make this course fast-moving made it necessary to present important material in a form of examples.
*CIMAT, Mexico, November 18-22, 2013*

**Author**: Ramsés H. Mena,Juan Carlos Pardo,Víctor Rivero,Gerónimo Uribe Bravo

**Publisher:** Birkhäuser

**ISBN:** 3319139843

**Category:** Mathematics

**Page:** 279

**View:** 8171

This volume features a collection of contributed articles and lecture notes from the XI Symposium on Probability and Stochastic Processes, held at CIMAT Mexico in September 2013. Since the symposium was part of the activities organized in Mexico to celebrate the International Year of Statistics, the program included topics from the interface between statistics and stochastic processes.

**Author**: Athanasios Papoulis

**Publisher:** McGraw-Hill Companies

**ISBN:** 9780070484689

**Category:** Mathematics

**Page:** 576

**View:** 3780

* Treats probability theory and stochastic processes as a deductive discipline and illustrates them with basic engineering applications * Approximately 1/3 of the text is new with new material on: Parameter Estimation, Random Walks, Markov Chains, and Queuing Theory

**Author**: Mario Lefebvre

**Publisher:** Springer Science & Business Media

**ISBN:** 9780387489766

**Category:** Mathematics

**Page:** 382

**View:** 6929

This book uses a distinctly applied framework to present the most important topics in stochastic processes, including Gaussian and Markovian processes, Markov Chains, Poisson processes, Brownian motion and queueing theory. The book also examines in detail special diffusion processes, with implications for finance, various generalizations of Poisson processes, and renewal processes. It contains numerous examples and approximately 350 advanced problems that reinforce both concepts and applications. Entertaining mini-biographies of mathematicians give an enriching historical context. The book includes statistical tables and solutions to the even-numbered problems at the end.

**Author**: Erhan Cinlar

**Publisher:** Courier Corporation

**ISBN:** 0486497976

**Category:** Mathematics

**Page:** 402

**View:** 4306

This clear presentation of themost fundamental models ofrandom phenomena employsmethods that recognize computerrelatedaspects of theory. Topicsinclude probability spaces andrandom variables, expectationsand independence, Bernoulliprocesses and sums of independentrandom variables, Poisson processes, Markov chainsand processes, and renewal theory. Assuming only a backgroundin calculus, this outstanding text includes an introductionto basic stochastic processes.Reprint of the Prentice-Hall Publishers, Englewood Cliffs,New Jersey, 1975 edition.

**Author**: Jan Vrbik,Paul Vrbik

**Publisher:** Springer Science & Business Media

**ISBN:** 1461440572

**Category:** Mathematics

**Page:** 287

**View:** 8847

The book presents an introduction to Stochastic Processes including Markov Chains, Birth and Death processes, Brownian motion and Autoregressive models. The emphasis is on simplifying both the underlying mathematics and the conceptual understanding of random processes. In particular, non-trivial computations are delegated to a computer-algebra system, specifically Maple (although other systems can be easily substituted). Moreover, great care is taken to properly introduce the required mathematical tools (such as difference equations and generating functions) so that even students with only a basic mathematical background will find the book self-contained. Many detailed examples are given throughout the text to facilitate and reinforce learning. Jan Vrbik has been a Professor of Mathematics and Statistics at Brock University in St Catharines, Ontario, Canada, since 1982. Paul Vrbik is currently a PhD candidate in Computer Science at the University of Western Ontario in London, Ontario, Canada. .
*Probability, Stochastic Processes and Inference*

**Author**: Athanasios Christou Micheas

**Publisher:** CRC Press

**ISBN:** 1466515228

**Category:** Mathematics

**Page:** 378

**View:** 2483

This book defines and investigates the concept of a random object. To accomplish this task in a natural way, it brings together three major areas; statistical inference, measure-theoretic probability theory and stochastic processes. This point of view has not been explored by existing textbooks; one would need material on real analysis, measure and probability theory, as well as stochastic processes - in addition to at least one text on statistics- to capture the detail and depth of material that has gone into this volume. Presents and illustrates ‘random objects’ in different contexts, under a unified framework, starting with rudimentary results on random variables and random sequences, all the way up to stochastic partial differential equations. Reviews rudimentary probability and introduces statistical inference, from basic to advanced, thus making the transition from basic statistical modeling and estimation to advanced topics more natural and concrete. Compact and comprehensive presentation of the material that will be useful to a reader from the mathematics and statistical sciences, at any stage of their career, either as a graduate student, an instructor, or an academician conducting research and requiring quick references and examples to classic topics. Includes 378 exercises, with the solutions manual available on the book's website. 121 illustrative examples of the concepts presented in the text (many including multiple items in a single example). The book is targeted towards students at the master’s and Ph.D. levels, as well as, academicians in the mathematics, statistics and related disciplines. Basic knowledge of calculus and matrix algebra is required. Prior knowledge of probability or measure theory is welcomed but not necessary.

**Author**: Allen B. Downey

**Publisher:** O'Reilly Germany

**ISBN:** 3868993436

**Category:** Computers

**Page:** 160

**View:** 1502

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

**Author**: N.G. Van Kampen

**Publisher:** Elsevier

**ISBN:** 9780080475363

**Category:** Science

**Page:** 464

**View:** 7427

The third edition of Van Kampen's standard work has been revised and updated. The main difference with the second edition is that the contrived application of the quantum master equation in section 6 of chapter XVII has been replaced with a satisfactory treatment of quantum fluctuations. Apart from that throughout the text corrections have been made and a number of references to later developments have been included. From the recent textbooks the following are the most relevant. C.W.Gardiner, Quantum Optics (Springer, Berlin 1991) D.T. Gillespie, Markov Processes (Academic Press, San Diego 1992) W.T. Coffey, Yu.P.Kalmykov, and J.T.Waldron, The Langevin Equation (2nd edition, World Scientific, 2004) * Comprehensive coverage of fluctuations and stochastic methods for describing them * A must for students and researchers in applied mathematics, physics and physical chemistry

**Author**: J. K. Lindsey

**Publisher:** Cambridge University Press

**ISBN:** 9781139454513

**Category:** Mathematics

**Page:** 338

**View:** 2763

This book was first published in 2004. Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. This book introduces practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.
*Stochastic Models and Statistical Inference*

**Author**: Denis Bosq,Hung T. Nguyen

**Publisher:** Springer Science & Business Media

**ISBN:** 9401587698

**Category:** Mathematics

**Page:** 354

**View:** 8891

This text is an Elementary Introduction to Stochastic Processes in discrete and continuous time with an initiation of the statistical inference. The material is standard and classical for a first course in Stochastic Processes at the senior/graduate level (lessons 1-12). To provide students with a view of statistics of stochastic processes, three lessons (13-15) were added. These lessons can be either optional or serve as an introduction to statistical inference with dependent observations. Several points of this text need to be elaborated, (1) The pedagogy is somewhat obvious. Since this text is designed for a one semester course, each lesson can be covered in one week or so. Having in mind a mixed audience of students from different departments (Math ematics, Statistics, Economics, Engineering, etc.) we have presented the material in each lesson in the most simple way, with emphasis on moti vation of concepts, aspects of applications and computational procedures. Basically, we try to explain to beginners questions such as "What is the topic in this lesson?" "Why this topic?", "How to study this topic math ematically?". The exercises at the end of each lesson will deepen the stu dents' understanding of the material, and test their ability to carry out basic computations. Exercises with an asterisk are optional (difficult) and might not be suitable for homework, but should provide food for thought.

Full PDF Download Free

Privacy Policy

Copyright © 2019 Download PDF Site — Primer WordPress theme by GoDaddy