Probability: A Graduate Course


Author: Allan Gut
Publisher: Springer Science & Business Media
ISBN: 9780387273327
Category: Mathematics
Page: 608
View: 8749

Continue Reading →

This textbook on the theory of probability starts from the premise that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by explanations of the three main subjects in probability: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales.

Probability

A Graduate Course
Author: Allan Gut
Publisher: Springer Science & Business Media
ISBN: 1461447070
Category: Mathematics
Page: 602
View: 3708

Continue Reading →

This textbook on the theory of probability is aimed at graduate students. It starts with the basic tools, and goes on to cover a number of subjects in detail, including the three central planks of probability theory.

Wahrscheinlichkeitstheorie und Stochastische Prozesse


Author: Michael Mürmann
Publisher: Springer-Verlag
ISBN: 364238160X
Category: Mathematics
Page: 428
View: 9703

Continue Reading →

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

Probability: A Graduate Course


Author: Allan Gut
Publisher: Springer
ISBN: 9781441919854
Category: Mathematics
Page: 608
View: 4683

Continue Reading →

This textbook on the theory of probability starts from the premise that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by explanations of the three main subjects in probability: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales.

Probability and Statistics for Particle Physics


Author: Carlos Maña
Publisher: Springer
ISBN: 3319557386
Category: Science
Page: 244
View: 6760

Continue Reading →

This book comprehensively presents the basic concepts of probability and Bayesian inference with sufficient generality to make them applicable to current problems in scientific research. The first chapter provides the fundamentals of probability theory that are essential for the analysis of random phenomena. The second chapter includes a full and pragmatic review of the Bayesian methods that constitute a natural and coherent framework with enough freedom to analyze all the information available from experimental data in a conceptually simple manner. The third chapter presents the basic Monte Carlo techniques used in scientific research, allowing a large variety of problems to be handled difficult to tackle by other procedures. The author also introduces a basic algorithm, which enables readers to simulate samples from simple distribution, and describes useful cases for researchers in particle physics.The final chapter is devoted to the basic ideas of Information Theory, which are important in the Bayesian methodology. This highly readable book is appropriate for graduate-level courses, while at the same time being useful for scientific researches in general and for physicists in particular since most of the examples are from the field of Particle Physics.

Markov Chain Monte Carlo - Methoden: Herleitung, Beweis und Implementierung


Author: Thomas Plehn
Publisher: diplom.de
ISBN: 3956849515
Category: Mathematics
Page: 53
View: 1074

Continue Reading →

In seiner Arbeit beschäftigt sich der Autor mit der ‘Markov Chain Monte Carlo‘, auch abgekürzt als MCMC. Dabei handelt es sich um eine Monte Carlo Methode. Allen Monte Carlo Methoden ist gemein, dass sie von einer mehr oder minder komplizierten Verteilung zufällige Szenarien erzeugen. Diese Szenarien werden dann genutzt um Aussagen über Erwartungswerte oder andere Kennzahlen der Verteilung zu treffen. Diese Aussagen sind natürlich nur zu gebrauchen, wenn man sehr viele zufällig erzeugte Szenarien auswertet. Die Methode kommt also immer dann zum Einsatz, wenn es nicht möglich ist, aus der Verteilung der Szenarien direkt Rückschlüsse auf die statistischen Kennzahlen der Verteilung zu ziehen, weder auf analytischem Wege, noch durch numerische Integration (bei sehr vielen Dimensionen steigt der Aufwand rapide an). Markov Chain Monte Carlo ist nun eine spezielle Monte Carlo Methode unter Zuhilfenahme von Markovketten. Diese kommt immer dann zum Einsatz, wenn es nicht möglich ist, von einer Verteilung auf einfache Weise Szenarien zu erzeugen. Eine Markovkette fängt bei einem Zustand an und geht von einem bestimmten Zustand mit einer bestimmten Wahrscheinlichkeit zu einem anderen Zustand über. Diese Übergangswahrscheinlichkeiten stehen in einer Übergangsmatrix. Der Knackpunkt ist nun, dass diese Form der Zustandsgenerierung oft einfacher zu implementieren ist, als direkt auf eine Verteilung zurückzugreifen. In der Arbeit gibt es mehrere konkrete Beispiele für den Einsatz solcher Methoden. Quelltexte der Implementierungen sind beigefügt.

Wahrscheinlichkeit


Author: Alʹbert Nikolaevich Shiri︠a︡ev,Hans Jürgen Engelbert
Publisher: N.A
ISBN: N.A
Category: Probabilities
Page: 592
View: 5882

Continue Reading →

Wahrscheinlichkeitsrechnung und Statistik


Author: Robert Hafner
Publisher: Springer-Verlag
ISBN: 3709169445
Category: Mathematics
Page: 512
View: 5818

Continue Reading →

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

Fundamentals of Probability: A First Course


Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 1441957804
Category: Mathematics
Page: 450
View: 3885

Continue Reading →

Probability theory is one branch of mathematics that is simultaneously deep and immediately applicable in diverse areas of human endeavor. It is as fundamental as calculus. Calculus explains the external world, and probability theory helps predict a lot of it. In addition, problems in probability theory have an innate appeal, and the answers are often structured and strikingly beautiful. A solid background in probability theory and probability models will become increasingly more useful in the twenty-?rst century, as dif?cult new problems emerge, that will require more sophisticated models and analysis. Thisisa text onthe fundamentalsof thetheoryofprobabilityat anundergraduate or ?rst-year graduate level for students in science, engineering,and economics. The only mathematical background required is knowledge of univariate and multiva- ate calculus and basic linear algebra. The book covers all of the standard topics in basic probability, such as combinatorial probability, discrete and continuous distributions, moment generating functions, fundamental probability inequalities, the central limit theorem, and joint and conditional distributions of discrete and continuous random variables. But it also has some unique features and a forwa- looking feel.

Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse


Author: Kai L. Chung
Publisher: Springer-Verlag
ISBN: 3642670334
Category: Mathematics
Page: 346
View: 2141

Continue Reading →

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

Probability for Statistics and Machine Learning

Fundamentals and Advanced Topics
Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 9781441996343
Category: Mathematics
Page: 784
View: 4208

Continue Reading →

This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.

Mathematik im mittelalterlichen Islam


Author: J. L. Berggren
Publisher: Springer-Verlag
ISBN: 9783540766889
Category: Mathematics
Page: 200
View: 9096

Continue Reading →

Die Mathematik im mittelalterlichen Islam hatte großen Einfluss auf die allgemeine Entwicklung des Faches. Der Autor beschreibt diese Periode der Geschichte der Mathematik und bezieht sich dabei auf die arabischsprachigen Quellen. Zu den behandelten Themen gehören Dezimalrechnen, Geometrie, ebene und sphärische Trigonometrie, Algebra sowie die Approximation von Wurzeln von Gleichungen. Das Buch wendet sich an Mathematikhistoriker und -studenten, aber auch an alle Interessierten mit Mathematikkenntnissen der weiterführenden Schule.

A Course in Mathematical Statistics and Large Sample Theory


Author: Rabi Bhattacharya,Lizhen Lin,Victor Patrangenaru
Publisher: Springer
ISBN: 1493940325
Category: Mathematics
Page: 389
View: 6836

Continue Reading →

This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods.

Financial Mathematics

A Comprehensive Treatment
Author: Giuseppe Campolieti,Roman N. Makarov
Publisher: CRC Press
ISBN: 1439892431
Category: Business & Economics
Page: 829
View: 3600

Continue Reading →

Versatile for Several Interrelated Courses at the Undergraduate and Graduate Levels Financial Mathematics: A Comprehensive Treatment provides a unified, self-contained account of the main theory and application of methods behind modern-day financial mathematics. Tested and refined through years of the authors’ teaching experiences, the book encompasses a breadth of topics, from introductory to more advanced ones. Accessible to undergraduate students in mathematics, finance, actuarial science, economics, and related quantitative areas, much of the text covers essential material for core curriculum courses on financial mathematics. Some of the more advanced topics, such as formal derivative pricing theory, stochastic calculus, Monte Carlo simulation, and numerical methods, can be used in courses at the graduate level. Researchers and practitioners in quantitative finance will also benefit from the combination of analytical and numerical methods for solving various derivative pricing problems. With an abundance of examples, problems, and fully worked out solutions, the text introduces the financial theory and relevant mathematical methods in a mathematically rigorous yet engaging way. Unlike similar texts in the field, this one presents multiple problem-solving approaches, linking related comprehensive techniques for pricing different types of financial derivatives. The book provides complete coverage of both discrete- and continuous-time financial models that form the cornerstones of financial derivative pricing theory. It also presents a self-contained introduction to stochastic calculus and martingale theory, which are key fundamental elements in quantitative finance.

Measure Theory and Probability Theory


Author: Krishna B. Athreya,Soumendra N. Lahiri
Publisher: Springer Science & Business Media
ISBN: 038732903X
Category: Business & Economics
Page: 618
View: 7949

Continue Reading →

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.

A Course on Rough Paths

With an Introduction to Regularity Structures
Author: Peter K. Friz,Martin Hairer
Publisher: N.A
ISBN: 9783319083339
Category:
Page: 268
View: 2074

Continue Reading →

Statistik-Workshop für Programmierer


Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Category: Computers
Page: 160
View: 537

Continue Reading →

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Probability Theory

A Comprehensive Course
Author: Achim Klenke
Publisher: Springer Science & Business Media
ISBN: 9781848000483
Category: Mathematics
Page: 621
View: 1343

Continue Reading →

Aimed primarily at graduate students and researchers, this text is a comprehensive course in modern probability theory and its measure-theoretical foundations. It covers a wide variety of topics, many of which are not usually found in introductory textbooks. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in the world of probability theory. In addition, plenty of figures, computer simulations, biographic details of key mathematicians, and a wealth of examples support and enliven the presentation.

A First Course in Multivariate Statistics


Author: Bernard Flury
Publisher: Springer Science & Business Media
ISBN: 1475727658
Category: Mathematics
Page: 715
View: 523

Continue Reading →

A comprehensive and self-contained introduction to the field, carefully balancing mathematical theory and practical applications. It starts at an elementary level, developing concepts of multivariate distributions from first principles. After a chapter on the multivariate normal distribution reviewing the classical parametric theory, methods of estimation are explored using the plug-in principles as well as maximum likelihood. Two chapters on discrimination and classification, including logistic regression, form the core of the book, followed by methods of testing hypotheses developed from heuristic principles, likelihood ratio tests and permutation tests. Finally, the powerful self-consistency principle is used to introduce principal components as a method of approximation, rounded off by a chapter on finite mixture analysis.

All of Statistics

A Concise Course in Statistical Inference
Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387217363
Category: Mathematics
Page: 442
View: 5079

Continue Reading →

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.