**Author**: Walter Rudin

**Publisher:**McGraw-Hill Publishing Company

**ISBN:**9780070856134

**Category:**Mathematics

**Page:**342

**View:**9562

Skip to content
# Search Results for: principles-of-mathematical-analysis-int-l-ed-international-series-in-pure-applied-mathematics

**Author**: Walter Rudin

**Publisher:** McGraw-Hill Publishing Company

**ISBN:** 9780070856134

**Category:** Mathematics

**Page:** 342

**View:** 9562

The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
*Modern Techniques and Their Applications*

**Author**: Gerald B. Folland

**Publisher:** John Wiley & Sons

**ISBN:** 1118626397

**Category:** Mathematics

**Page:** 416

**View:** 9645

An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.

**Author**: G. B. Folland

**Publisher:** American Mathematical Soc.

**ISBN:** 9780821847909

**Category:** Mathematics

**Page:** 433

**View:** 1002

This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
*The Theory of Calculus*

**Author**: Kenneth A. Ross

**Publisher:** Springer Science & Business Media

**ISBN:** 1461462711

**Category:** Mathematics

**Page:** 412

**View:** 3285

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

**Author**: Bernard R. Gelbaum,John M. H. Olmsted

**Publisher:** Courier Corporation

**ISBN:** 0486134911

**Category:** Mathematics

**Page:** 224

**View:** 1348

These counterexamples deal mostly with the part of analysis known as "real variables." Covers the real number system, functions and limits, differentiation, Riemann integration, sequences, infinite series, functions of 2 variables, plane sets, more. 1962 edition.

**Author**: Walter Rudin

**Publisher:** Tata McGraw-Hill Education

**ISBN:** 9780070619883

**Category:** Functional analysis

**Page:** 424

**View:** 6466

**Author**: Walter Rudin

**Publisher:** American Mathematical Soc.

**ISBN:** 0821806335

**Category:** Mathematics

**Page:** 191

**View:** 2529

Walter Rudin's memoirs should prove to be a delightful read specifically to mathematicians, but also to historians who are interested in learning abou his colourful history and ancestry. Characterized by his personal style of elegance, clarity, and brevity, Rudin presents in the first part of the book his early memories about his family history, his boyhood in Vienna throughout the 1920s and 1930s, and his experiences during World War II. Part II offers samples of his work, in which he relates where problems came from, what their solutions led to, and who else was involved. As those who are familiar with Rudin's writing will recognize, he brings to this book the same care, depth, and originality that is the hallmark of his work. Co-published with the London Mathematical Society

**Author**: George F. Simmons

**Publisher:** CRC Press

**ISBN:** 1498702600

**Category:** Mathematics

**Page:** 764

**View:** 3110

Fads are as common in mathematics as in any other human activity, and it is always difficult to separate the enduring from the ephemeral in the achievements of one’s own time. An unfortunate effect of the predominance of fads is that if a student doesn’t learn about such worthwhile topics as the wave equation, Gauss’s hypergeometric function, the gamma function, and the basic problems of the calculus of variations—among others—as an undergraduate, then he/she is unlikely to do so later. The natural place for an informal acquaintance with such ideas is a leisurely introductory course on differential equations. Specially designed for just such a course, Differential Equations with Applications and Historical Notes takes great pleasure in the journey into the world of differential equations and their wide range of applications. The author—a highly respected educator—advocates a careful approach, using explicit explanation to ensure students fully comprehend the subject matter. With an emphasis on modeling and applications, the long-awaited Third Edition of this classic textbook presents a substantial new section on Gauss’s bell curve and improves coverage of Fourier analysis, numerical methods, and linear algebra. Relating the development of mathematics to human activity—i.e., identifying why and how mathematics is used—the text includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout. Provides an ideal text for a one- or two-semester introductory course on differential equations Emphasizes modeling and applications Presents a substantial new section on Gauss’s bell curve Improves coverage of Fourier analysis, numerical methods, and linear algebra Relates the development of mathematics to human activity—i.e., identifying why and how mathematics is used Includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout Uses explicit explanation to ensure students fully comprehend the subject matter Outstanding Academic Title of the Year, Choice magazine, American Library Association.

**Author**: K. L. Chung

**Publisher:** Springer Science & Business Media

**ISBN:** 1475751141

**Category:** Mathematics

**Page:** 325

**View:** 7017

In the past half-century the theory of probability has grown from a minor isolated theme into a broad and intensive discipline interacting with many other branches of mathematics. At the same time it is playing a central role in the mathematization of various applied sciences such as statistics, opera tions research, biology, economics and psychology-to name a few to which the prefix "mathematical" has so far been firmly attached. The coming-of-age of probability has been reflected in the change of contents of textbooks on the subject. In the old days most of these books showed a visible split personality torn between the combinatorial games of chance and the so-called "theory of errors" centering in the normal distribution. This period ended with the appearance of Feller's classic treatise (see [Feller l]t) in 1950, from the manuscript of which I gave my first substantial course in probability. With the passage of time probability theory and its applications have won a place in the college curriculum as a mathematical discipline essential to many fields of study. The elements of the theory are now given at different levels, sometimes even before calculus. The present textbook is intended for a course at about the sophomore level. It presupposes no prior acquaintance with the subject and the first three chapters can be read largely without the benefit of calculus.
*(Volume 1)*

**Author**: George A Anastassiou

**Publisher:** World Scientific

**ISBN:** 9814492884

**Category:** Mathematics

**Page:** 624

**View:** 2749

Applied mathematics connects the mathematical theory to the reality by solving real world problems and shows the power of the science of mathematics, greatly improving our lives. Therefore it plays a very active and central role in the scientific world. This volume contains 14 high quality survey articles — incorporating original results and describing the main research activities of contemporary applied mathematics — written by top people in the field. The articles have been written in review style, so that the researcher can have a quick and thorough view of what is happening in the main subfields of applied mathematics. Contents:Two Contemporary Computational Concepts in Numerical Analysis (I K Argyros)On the Simultaneous Approximation of Functions and Their Derivatives (T Kilgore)Copositive Polynomial Approximation Revisited (Y K Hu & X M Yu)Sampling Theory and Function Spaces (H-J Schmeisser & W Sickel)Evaluating Statistical Functionals by Means of Projections onto Convex Cones in Hilbert Spaces: Part I and II (T Rychlik)Extrapolation: From Calculation of π to Finite Element Method of Partial Differential Equations (X-P Shen)A Survey on Scaling Function Interpolation and Approximation (E-B Lin)and other papers Readership: Applied mathematicians, statisticians, economists and engineers. Keywords:Singular Integrals;Numerical Analysis;Convolution Operators;Approximation of Functions;Minimal Projection;Fuzzy Control;Sampling Theory;Stable Financial Modelling;Ill-Posed Problems;Finite Element Method

**Author**: William Wade,W. R. Wade

**Publisher:** Math Classics

**ISBN:** 9780134707624

**Category:** Mathematics

**Page:** 696

**View:** 7015

Originally published in 2010, reissued as part of Pearson's modern classic series.
*Revised*

**Author**: Lynn Harold Loomis,Shlomo Sternberg

**Publisher:** World Scientific Publishing Company

**ISBN:** 9814583952

**Category:** Mathematics

**Page:** 596

**View:** 3591

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

**Author**: Wilson A Sutherland

**Publisher:** Oxford University Press

**ISBN:** 0191568309

**Category:** Mathematics

**Page:** N.A

**View:** 5425

One of the ways in which topology has influenced other branches of mathematics in the past few decades is by putting the study of continuity and convergence into a general setting. This new edition of Wilson Sutherland's classic text introduces metric and topological spaces by describing some of that influence. The aim is to move gradually from familiar real analysis to abstract topological spaces, using metric spaces as a bridge between the two. The language of metric and topological spaces is established with continuity as the motivating concept. Several concepts are introduced, first in metric spaces and then repeated for topological spaces, to help convey familiarity. The discussion develops to cover connectedness, compactness and completeness, a trio widely used in the rest of mathematics. Topology also has a more geometric aspect which is familiar in popular expositions of the subject as `rubber-sheet geometry', with pictures of Möbius bands, doughnuts, Klein bottles and the like; this geometric aspect is illustrated by describing some standard surfaces, and it is shown how all this fits into the same story as the more analytic developments. The book is primarily aimed at second- or third-year mathematics students. There are numerous exercises, many of the more challenging ones accompanied by hints, as well as a companion website, with further explanations and examples as well as material supplementary to that in the book.

**Author**: Ivan Niven,Herbert S. Zuckerman,Hugh L. Montgomery

**Publisher:** John Wiley & Sons

**ISBN:** 9788126518111

**Category:** Number theory

**Page:** 545

**View:** 4243

· Divisibility· Congruences· Quadratic Reciprocity and Quadratic Forms· Some Functions of Number Theory· Some Diophantine Equations· Farey Fractions and Irrational Numbers· Simple Continued Fractions· Primes and Multiplicative Number Theory· Algebraic Numbers· The Partition Function · The Density of Sequences of Integers

**Author**: Paul Adrien Maurice Dirac

**Publisher:** Oxford University Press

**ISBN:** 9780198520115

**Category:** Philosophy

**Page:** 314

**View:** 972

The first edition of this work appeared in 1930, and its originality won it immediate recognition as a classic of modern physical theory. The fourth edition has been bought out to meet a continued demand. Some improvements have been made, the main one being the complete rewriting of the chapter on quantum electrodymanics, to bring in electron-pair creation. This makes it suitable as an introduction to recent works on quantum field theories.
*A Probabilistic Approach*

**Author**: Agnès Desolneux,Lionel Moisan,J.-M. Morel

**Publisher:** Springer Science & Business Media

**ISBN:** 0387726357

**Category:** Computers

**Page:** 276

**View:** 3454

This book introduces a new theory in Computer Vision yielding elementary techniques to analyze digital images. These techniques are a mathematical formalization of the Gestalt theory. From the mathematical viewpoint the closest field to it is stochastic geometry, involving basic probability and statistics, in the context of image analysis. The book is mathematically self-contained, needing only basic understanding of probability and calculus. The text includes more than 130 illustrations, and numerous examples based on specific images on which the theory is tested. Detailed exercises at the end of each chapter help the reader develop a firm understanding of the concepts imparted.
*Third Edition*

**Author**: Terence Tao

**Publisher:** Springer

**ISBN:** 9811017891

**Category:** Mathematics

**Page:** 350

**View:** 4740

This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.
*A Second First and First Second Course in Analysis*

**Author**: Thomas William Körner

**Publisher:** American Mathematical Soc.

**ISBN:** 0821834479

**Category:** Mathematics

**Page:** 590

**View:** 8129

This book not only provides a lot of solid information about real analysis, it also answers those questions which students want to ask but cannot figure how to formulate. To read this book is to spend time with one of the modern masters in the subject. --Steven G. Krantz, Washington University, St. Louis One of the major assets of the book is Korner's very personal writing style. By keeping his own engagement with the material continually in view, he invites the reader to a similarly high level of involvement. And the witty and erudite asides that are sprinkled throughout the book are a real pleasure. --Gerald Folland, University of Washingtion, Seattle Many students acquire knowledge of a large number of theorems and methods of calculus without being able to say how they hang together. This book provides such students with the coherent account that they need. A Companion to Analysis explains the problems which must be resolved in order to obtain a rigorous development of the calculus and shows the student how those problems are dealt with. Starting with the real line, it moves on to finite dimensional spaces and then to metric spaces. Readers who work through this text will be ready for such courses as measure theory, functional analysis, complex analysis and differential geometry. Moreover, they will be well on the road which leads from mathematics student to mathematician. Able and hard working students can use this book for independent study, or it can be used as the basis for an advanced undergraduate or elementary graduate course. An appendix contains a large number of accessible but non-routine problems to improve knowledge and technique.

**Author**: Nancy L. Stokey

**Publisher:** Harvard University Press

**ISBN:** 0674735188

**Category:** Business & Economics

**Page:** 607

**View:** 3592

This rigorous but brilliantly lucid book presents a self-contained treatment of modern economic dynamics. Stokey, Lucas, and Prescott develop the basic methods of recursive analysis and illustrate the many areas where they can usefully be applied.

Full PDF Download Free

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy