Pattern Recognition


Author: Sergios Theodoridis,Konstantinos Koutroumbas
Publisher: Academic Press
ISBN: 9780080949123
Category: Computers
Page: 984
View: 7279

Continue Reading →

This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. · Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques · Many more diagrams included--now in two color--to provide greater insight through visual presentation · Matlab code of the most common methods are given at the end of each chapter. · More Matlab code is available, together with an accompanying manual, via this site · Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms. · An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary, and solved examples including real-life data sets in imaging, and audio recognition. The companion book will be available separately or at a special packaged price (ISBN: 9780123744869). Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor.

Introduction to Pattern Recognition

A Matlab Approach
Author: Sergios Theodoridis,Aggelos Pikrakis,Konstantinos Koutroumbas,Dionisis Cavouras
Publisher: Academic Press
ISBN: 9780080922751
Category: Computers
Page: 231
View: 9798

Continue Reading →

Introduction to Pattern Recognition: A Matlab Approach is an accompanying manual to Theodoridis/Koutroumbas' Pattern Recognition. It includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. This text is designed for electronic engineering, computer science, computer engineering, biomedical engineering and applied mathematics students taking graduate courses on pattern recognition and machine learning as well as R&D engineers and university researchers in image and signal processing/analyisis, and computer vision. Matlab code and descriptive summary of the most common methods and algorithms in Theodoridis/Koutroumbas, Pattern Recognition, Fourth Edition Solved examples in Matlab, including real-life data sets in imaging and audio recognition Available separately or at a special package price with the main text (ISBN for package: 978-0-12-374491-3)

Applied Pattern Recognition

Algorithms and Implementation in C++
Author: Dietrich W. R. Paulus,Joachim Hornegger
Publisher: Springer Science & Business Media
ISBN: 9783528355586
Category: Computers
Page: 372
View: 5691

Continue Reading →

This book demonstrates the efficiency of the C++ programming language in the realm of pattern recognition and pattern analysis. For this 4th edition, new features of the C++ language were integrated and their relevance for image and speech processing is discussed.

Pattern Recognition


Author: William Gibson
Publisher: Penguin UK
ISBN: 0141904461
Category: Fiction
Page: 368
View: 6517

Continue Reading →

One of the most influential and imaginative writers of the past twenty years turns his attention to London - with dazzling results. Cayce Pollard owes her living to her pathological sensitivity to logos. In London to consult for the world's coolest ad agency, she finds herself catapulted, via her addiction to a mysterious body of fragmentary film footage, uploaded to the Web by a shadowy auteur, into a global quest for this unknown 'garage Kubrick'. Cayce becomes involved with an eccentric hacker, a vengeful ad executive, a defrocked mathematician, a Tokyo Otaku-coven known as Eye of the Dragon and, eventually, the elusive 'Kubrick' himself. William Gibson's new novel is about the eternal mystery of London, the coolest sneakers in the world, and life in (the former) USSR.

Machine Vision

Theory, Algorithms, Practicalities
Author: E. R. Davies
Publisher: Elsevier
ISBN: 1483275612
Category: Computers
Page: 572
View: 4381

Continue Reading →

Machine Vision: Theory, Algorithms, Practicalities covers the limitations, constraints, and tradeoffs of vision algorithms. This book is organized into four parts encompassing 21 chapters that tackle general topics, such as noise suppression, edge detection, principles of illumination, feature recognition, Bayes’ theory, and Hough transforms. Part 1 provides research ideas on imaging and image filtering operations, thresholding techniques, edge detection, and binary shape and boundary pattern analyses. Part 2 deals with the area of intermediate-level vision, the nature of the Hough transform, shape detection, and corner location. Part 3 demonstrates some of the practical applications of the basic work previously covered in the book. This part also discusses some of the principles underlying implementation, including on lighting and hardware systems. Part 4 highlights the limitations and constraints of vision algorithms and their corresponding solutions. This book will prove useful to students with undergraduate course on vision for electronic engineering or computer science.

Cross-Disciplinary Applications of Artificial Intelligence and Pattern Recognition: Advancing Technologies

Advancing Technologies
Author: Mago, Vijay Kumar
Publisher: IGI Global
ISBN: 1613504306
Category: Computers
Page: 786
View: 7492

Continue Reading →

The need for intelligent machines in areas such as medical diagnostics, biometric security systems, and image processing motivates researchers to develop and explore new techniques, algorithms, and applications in this evolving field.Cross-Disciplinary Applications of Artificial Intelligence and Pattern Recognition: Advancing Technologies provides a common platform for researchers to present theoretical and applied research findings for enhancing and developing intelligent systems. Through its discussions of advances in and applications of pattern recognition technologies and artificial intelligence, this reference highlights core concepts in biometric imagery, feature recognition, and other related fields, along with their applicability.

Bayesian Programming


Author: Pierre Bessiere,Emmanuel Mazer,Juan Manuel Ahuactzin,Kamel Mekhnacha
Publisher: CRC Press
ISBN: 1439880336
Category: Business & Economics
Page: 380
View: 6418

Continue Reading →

Probability as an Alternative to Boolean Logic While logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain Data Emphasizing probability as an alternative to Boolean logic, Bayesian Programming covers new methods to build probabilistic programs for real-world applications. Written by the team who designed and implemented an efficient probabilistic inference engine to interpret Bayesian programs, the book offers many Python examples that are also available on a supplementary website together with an interpreter that allows readers to experiment with this new approach to programming. Principles and Modeling Only requiring a basic foundation in mathematics, the first two parts of the book present a new methodology for building subjective probabilistic models. The authors introduce the principles of Bayesian programming and discuss good practices for probabilistic modeling. Numerous simple examples highlight the application of Bayesian modeling in different fields. Formalism and Algorithms The third part synthesizes existing work on Bayesian inference algorithms since an efficient Bayesian inference engine is needed to automate the probabilistic calculus in Bayesian programs. Many bibliographic references are included for readers who would like more details on the formalism of Bayesian programming, the main probabilistic models, general purpose algorithms for Bayesian inference, and learning problems. FAQs Along with a glossary, the fourth part contains answers to frequently asked questions. The authors compare Bayesian programming and possibility theories, discuss the computational complexity of Bayesian inference, cover the irreducibility of incompleteness, and address the subjectivist versus objectivist epistemology of probability. The First Steps toward a Bayesian Computer A new modeling methodology, new inference algorithms, new programming languages, and new hardware are all needed to create a complete Bayesian computing framework. Focusing on the methodology and algorithms, this book describes the first steps toward reaching that goal. It encourages readers to explore emerging areas, such as bio-inspired computing, and develop new programming languages and hardware architectures.

Machine Learning

A Probabilistic Perspective
Author: Kevin P. Murphy
Publisher: MIT Press
ISBN: 0262018020
Category: Computers
Page: 1067
View: 7603

Continue Reading →

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Introduction to Machine Learning


Author: Ethem Alpaydin
Publisher: MIT Press
ISBN: 0262028182
Category: Computers
Page: 640
View: 4947

Continue Reading →

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing.Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.

Pattern Recognition and Matlab Intro


Author: Sergios Theodoridis,Konstantinos Koutroumbas
Publisher: Academic Press
ISBN: 9780123744913
Category: Technology & Engineering
Page: N.A
View: 9013

Continue Reading →

This specially priced set includes a copy of Theodoridis/Koutroumbas, Pattern Recognition 4e and Theodoridis/Pikrakis/Koutroumbas/Cavouras, Introduction to Pattern Recognition: A Matlab Approach. The main text provides breadth and depth of coverage of pattern recognition theory and application, including modern topics like non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, and combining clustering algorithms. Together with worked examples, exercises, and Matlab applications it provides the most comprehensive coverage currently available. The accompanying manual includes MATLAB code of the most common methods and algorithms in the book, together with a descriptive summary and solved problems, and including real-life data sets in imaging and audio recognition. This specially priced set includes a copy of Theodoridis/Koutroumbas, Pattern Recognition 4e and Theodoridis/Pikrakis/Koutroumbas/Cavouras, Introduction to Pattern Recognition: A Matlab Approach. The main text provides breadth and depth of coverage of pattern recognition theory and application, including modern topics like non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, and combining clustering algorithms. Together with worked examples, exercises, and Matlab applications it provides the most comprehensive coverage currently available. The accompanying manual includes MATLAB code of the most common methods and algorithms in the book, together with a descriptive summary and solved problems, and including real-life data sets in imaging and audio recognition.

Pattern Recognition and Machine Learning


Author: Christopher M. Bishop
Publisher: Springer
ISBN: 9781493938438
Category: Computers
Page: 738
View: 8196

Continue Reading →

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Fetal Heart Rate Monitoring


Author: Freeman,Thomas J. Garite,Michael P. Nageotte,Lisa A. Miller
Publisher: Lippincott Williams & Wilkins
ISBN: 1451116632
Category: Medical
Page: 271
View: 2403

Continue Reading →

"Fetal heart rate monitoring is widely used by almost every obstetrician as a way to document the case and to help decrease health care costs. This is a short reference on the physiologic benefits, instrumentation, application and interpretation of fetalheart rate monitoring. The second half of the book uses actual FHR strips and cases to illustrate various anomalies (fetal distress, fetal distress in prematurity, fetus with CNS dysfunction). Several new drugs have been introduced for use during labor that effect FHR"--Provided by publisher.

Data Mining

Practical Machine Learning Tools and Techniques
Author: Ian H. Witten,Eibe Frank,Mark A. Hall,Christopher J. Pal
Publisher: Morgan Kaufmann
ISBN: 0128043571
Category: Computers
Page: 654
View: 8884

Continue Reading →

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at http://www.cs.waikato.ac.nz/ml/weka/book.html It contains Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface Includes open-access online courses that introduce practical applications of the material in the book

Gait Analysis

An Introduction
Author: Michael W. Whittle
Publisher: Butterworth-Heinemann
ISBN: 1483183734
Category: Medical
Page: 240
View: 1223

Continue Reading →

Gait Analysis: An Introduction focuses on the systematic study of human walking and its contributions in the medical management of diseases affecting the locomotor system. The book first covers normal gait and pathological gait. Discussions focus on common pathologies affecting gait, amputee gait, walking aids, particular gait abnormalities, gait in the elderly and the young, moments of force, energy consumption, gait cycle, muscular activity during gait, and optimization of energy usage. The manuscript then elaborates on the methods of gait analysis, including visual gait analysis, general gait parameters, timing the gait cycle, direct motion measurement systems, electrogoniometers, electromyography, accelerometers, gyroscopes, and force platforms. The publication tackles the applications of gait analysis, as well as clinical gait and scientific gait analysis, normal ranges for gait parameters, conversions between measurement units, and computer program for general gait parameters. The manuscript is a valuable source of data for students of physical therapy, bioengineering, orthopedics, rheumatology, neurology, and rehabilitation.

World Regional Geography

Global Patterns, Local Lives
Author: Lydia Mihelic Pulsipher,Alex Pulsipher
Publisher: Macmillan
ISBN: 1429232412
Category: Science
Page: 625
View: 9719

Continue Reading →

Like no other textbook, Pulsipher and Pulsipher’s World Regional Geography puts a human face on the study of regional geography, showing how larger geographical forces affect the lives of individuals and communities around the globe. It’s a refreshing, people-centered approach to the subject focusing on the stories of real people, global trends and interregional linkages, and contemporary topics that transcend regional borders (the war on terrorism, global political order, interregional trade, the global economy, popular culture, the environment, and the Internet).

Data Mining: Concepts and Techniques


Author: Jiawei Han,Jian Pei,Micheline Kamber
Publisher: Elsevier
ISBN: 9780123814807
Category: Computers
Page: 744
View: 9699

Continue Reading →

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Machine Learning and Data Mining in Pattern Recognition

4th International Conference, MLDM 2005, Leipzig, Germany, July 9-11, 2005, Proceedings
Author: Petra Perner,Atsushi Imiya
Publisher: Springer Science & Business Media
ISBN: 3540269231
Category: Computers
Page: 698
View: 1522

Continue Reading →

We met again in front of the statue of Gottfried Wilhelm von Leibniz in the city of Leipzig. Leibniz, a famous son of Leipzig, planned automatic logical inference using symbolic computation, aimed to collate all human knowledge. Today, artificial intelligence deals with large amounts of data and knowledge and finds new information using machine learning and data mining. Machine learning and data mining are irreplaceable subjects and tools for the theory of pattern recognition and in applications of pattern recognition such as bioinformatics and data retrieval. This was the fourth edition of MLDM in Pattern Recognition which is the main event of Technical Committee 17 of the International Association for Pattern Recognition; it started out as a workshop and continued as a conference in 2003. Today, there are many international meetings which are titled “machine learning” and “data mining”, whose topics are text mining, knowledge discovery, and applications. This meeting from the first focused on aspects of machine learning and data mining in pattern recognition problems. We planned to reorganize classical and well-established pattern recognition paradigms from the viewpoints of machine learning and data mining. Though it was a challenging program in the late 1990s, the idea has inspired new starting points in pattern recognition and effects in other areas such as cognitive computer vision.

Machine Learning

A Bayesian and Optimization Perspective
Author: Sergios Theodoridis
Publisher: Academic Press
ISBN: 0128017228
Category: Computers
Page: 1062
View: 7198

Continue Reading →

This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods. The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling. Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied. MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.

Pattern Recognition and Classification in Time Series Data


Author: Volna, Eva,Kotyrba, Martin,Janosek, Michal
Publisher: IGI Global
ISBN: 1522505660
Category: Computers
Page: 282
View: 4931

Continue Reading →

Patterns can be any number of items that occur repeatedly, whether in the behaviour of animals, humans, traffic, or even in the appearance of a design. As technologies continue to advance, recognizing, mimicking, and responding to all types of patterns becomes more precise. Pattern Recognition and Classification in Time Series Data focuses on intelligent methods and techniques for recognizing and storing dynamic patterns. Emphasizing topics related to artificial intelligence, pattern management, and algorithm development, in addition to practical examples and applications, this publication is an essential reference source for graduate students, researchers, and professionals in a variety of computer-related disciplines.