Optimale Steuerung partieller Differentialgleichungen

Theorie, Verfahren und Anwendungen
Author: Fredi Tröltzsch
Publisher: Springer-Verlag
ISBN: 3322968448
Category: Mathematics
Page: 298
View: 9441

Continue Reading →

Die mathematische Theorie der optimalen Steuerung hat sich im Zusammenhang mit Berechnungen für die Luft- und Raumfahrt schnell zu einem wichtigen und eigenständigen Gebiet der angewandten Mathematik entwickelt. Die optimale Steuerung durch partielle Differentialgleichungen modellierter Prozesse wird eine numerische Herausforderung der Zukunft sein. Sie erfordert die Analysis nichtlinearer partieller Differentialgleichungen, Optimierung im Funktionenraum, nichtlineare Funktionalanalysis sowie Optimierungsverfahren für extrem große Aufgaben. Im Buch werden entsprechende Grundlagen mit langsam steigendem Schwierigkeitsgrad entwickelt. Grundkenntnisse zu partiellen Differentialgleichungen und der Funktionalanalysis werden jeweils dort gebracht, wo sie konkret nötig sind. Das Buch enthält viele Beispiele und eignet sich als Grundlage für Vorlesungen und Seminare.

Partial Differential Equations


Author: Lawrence C. Evans
Publisher: American Mathematical Soc.
ISBN: 0821849743
Category: Mathematics
Page: 749
View: 4546

Continue Reading →

This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. ... Evans' book is evidence of his mastering of the field and the clarity of presentation. --Luis Caffarelli, University of Texas It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ... Every graduate student in analysis should read it. --David Jerison, MIT I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ... I am very happy with the preparation it provides my students. --Carlos Kenig, University of Chicago Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ... An outstanding reference for many aspects of the field. --Rafe Mazzeo, Stanford University

Hyperbolic Partial Differential Equations and Geometric Optics


Author: Jeffrey Rauch
Publisher: American Mathematical Soc.
ISBN: 0821872915
Category: Mathematics
Page: 363
View: 891

Continue Reading →

This book introduces graduate students and researchers in mathematics and the sciences to the multifaceted subject of the equations of hyperbolic type, which are used, in particular, to describe propagation of waves at finite speed. Among the topics carefully presented in the book are nonlinear geometric optics, the asymptotic analysis of short wavelength solutions, and nonlinear interaction of such waves. Studied in detail are the damping of waves, resonance, dispersive decay, and solutions to the compressible Euler equations with dense oscillations created by resonant interactions. Many fundamental results are presented for the first time in a textbook format. In addition to dense oscillations, these include the treatment of precise speed of propagation and the existence and stability questions for the three wave interaction equations. One of the strengths of this book is its careful motivation of ideas and proofs, showing how they evolve from related, simpler cases. This makes the book quite useful to both researchers and graduate students interested in hyperbolic partial differential equations. Numerous exercises encourage active participation of the reader. The author is a professor of mathematics at the University of Michigan. A recognized expert in partial differential equations, he has made important contributions to the transformation of three areas of hyperbolic partial differential equations: nonlinear microlocal analysis, the control of waves, and nonlinear geometric optics.

A Basic Course in Partial Differential Equations


Author: Qing Han
Publisher: American Mathematical Soc.
ISBN: 0821852558
Category: Mathematics
Page: 293
View: 9306

Continue Reading →

This is a textbook for an introductory graduate course on partial differential equations. Han focuses on linear equations of first and second order. An important feature of his treatment is that the majority of the techniques are applicable more generally. In particular, Han emphasizes a priori estimates throughout the text, even for those equations that can be solved explicitly. Such estimates are indispensable tools for proving the existence and uniqueness of solutions to PDEs, being especially important for nonlinear equations. The estimates are also crucial to establishing properties of the solutions, such as the continuous dependence on parameters. Han's book is suitable for students interested in the mathematical theory of partial differential equations, either as an overview of the subject or as an introduction leading to further study.

Introduction to Partial Differential Equations


Author: David Borthwick
Publisher: Springer
ISBN: 3319489364
Category: Mathematics
Page: 283
View: 9729

Continue Reading →

This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise. Within each section the author creates a narrative that answers the five questions: What is the scientific problem we are trying to understand? How do we model that with PDE? What techniques can we use to analyze the PDE? How do those techniques apply to this equation? What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.

Partielle Differentialgleichungen

Eine Einführung
Author: Walter A. Strauss
Publisher: Springer-Verlag
ISBN: 366312486X
Category: Mathematics
Page: 458
View: 545

Continue Reading →

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

Recent Developments in Nonlinear Partial Differential Equations

The Second Symposium on Analysis and PDE's, June 7-10, 2004, Purdue University, West Lafayette, Indiana
Author: Donatella Danielli
Publisher: American Mathematical Soc.
ISBN: 0821837400
Category: Mathematics
Page: 133
View: 971

Continue Reading →

This volume contains research and expository articles based on talks presented at the 2nd Symposium on Analysis and PDEs, held at Purdue University. The Symposium focused on topics related to the theory and applications of nonlinear partial differential equations that are at the forefront of current international research. Papers in this volume provide a comprehensive account of many of the recent developments in the field. The topics featured in this volume include: kinetic formulations of nonlinear PDEs; recent unique continuation results and their applications; concentrations and constrained Hamilton-Jacobi equations; nonlinear Schrodinger equations; quasiminimal sets for Hausdorff measures; Schrodinger flows into Kahler manifolds; and parabolic obstacle problems with applications to finance. The clear and concise presentation in many articles makes this volume suitable for both researchers and graduate students.

Partielle Differentialgleichungen und numerische Methoden


Author: Stig Larsson,Vidar Thomee
Publisher: Springer-Verlag
ISBN: 3540274227
Category: Mathematics
Page: 272
View: 465

Continue Reading →

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena

2008-2009 Research Program on Nonlinear Partial Differential Equations, Centre for Advanced Study of the Norwegian Academy of Sciences and Letters, Oslo, Norway
Author: Norske videnskaps-akademi. Research Program on Nonlinear Partial Differential Equations
Publisher: American Mathematical Soc.
ISBN: 082184976X
Category: Mathematics
Page: 389
View: 3085

Continue Reading →

This volume presents the state of the art in several directions of research conducted by renowned mathematicians who participated in the research program on Nonlinear Partial Differential Equations at the Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway, during the academic year 2008-09. The main theme of the volume is nonlinear partial differential equations that model a wide variety of wave phenomena. Topics discussed include systems of conservation laws, compressible Navier-Stokes equations, Navier-Stokes-Korteweg type systems in models for phase transitions, nonlinear evolution equations, degenerate/mixed type equations in fluid mechanics and differential geometry, nonlinear dispersive wave equations (Korteweg-de Vries, Camassa-Holm type, etc.), and Poisson interface problems and level set formulations.

Partial Differential Equations I

Basic Theory
Author: Michael Eugene Taylor,Eberhard Zeidler
Publisher: Springer Science & Business Media
ISBN: 9780387946535
Category: Mathematics
Page: 563
View: 2628

Continue Reading →

This book is intended to be a comprehensive introduction to the subject of partial differential equations. It should be useful to graduate students at all levels beyond that of a basic course in measure theory. It should also be of interest to professional mathematicians in analysis, mathematical physics, and differential geometry. This work will be divided into three volumes, the first of which focuses on the theory of ordinary differential equations and a survey of basic linear PDEs.

Stochastic Partial Differential Equations


Author: Sergey V. Lototsky,Boris L. Rozovsky
Publisher: Springer
ISBN: 3319586475
Category: Mathematics
Page: 508
View: 9795

Continue Reading →

Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected to the material discussed at a particular place in the text. The questions usually ask to verify something, so that the reader already knows the answer and, if pressed for time, can move on. Accordingly, no solutions are provided, but there are often hints on how to proceed. The book will be of interest to everybody working in the area of stochastic analysis, from beginning graduate students to experts in the field.

Partial Differential Equations

An Introduction
Author: David Colton
Publisher: Courier Corporation
ISBN: 0486138437
Category: Mathematics
Page: 320
View: 4283

Continue Reading →

This text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Features coverage of integral equations and basic scattering theory. Includes exercises, many with answers. 1988 edition.

Introduction to Partial Differential Equations


Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 3319020994
Category: Mathematics
Page: 636
View: 8536

Continue Reading →

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Differentialgeometrie und Minimalflächen


Author: Jost-Hinrich Eschenburg,Jürgen Jost
Publisher: Springer-Verlag
ISBN: 3540682937
Category: Mathematics
Page: 256
View: 9259

Continue Reading →

Hier wird zum ersten Mal Studenten eines Anfängerkurses in Differenzialgeometrie die Theorie der Minimalflächen zugänglich gemacht. Das Buch bleibt dabei auf das Wesentliche beschränkt, ist immer gut lesbar und ausführlich motiviert. Für die Neuauflage wurde der Text in Zusammenarbeit mit J.-H. Eschenburg überarbeitet und aktualisiert. J. Jost ist seit 1993 Träger des Leibniz-Förderpreises, der an herausragende Wissenschaftler vergeben wird.

Nonlinear partial differential equations in differential geometry


Author: Robert Hardt
Publisher: American Mathematical Soc.
ISBN: 9780821804315
Category: Mathematics
Page: 339
View: 980

Continue Reading →

What distinguishes differential geometry in the last half of the twentieth century from its earlier history is the use of nonlinear partial differential equations in the study of curved manifolds, submanifolds, mapping problems, and function theory on manifolds, among other topics. The differential equations appear as tools and as objects of study, with analytic and geometric advances fueling each other in the current explosion of progress in this area of geometry in the last twenty years. This book contains lecture notes of minicourses at the Regional Geometry Institute at Park City, Utah, in July 1992. Presented here are surveys of breaking developments in a number of areas of nonlinear partial differential equations in differential geometry. The authors of the articles are not only excellent expositors, but are also leaders in this field of research. All of the articles provide in-depth treatment of the topics and require few prerequisites and less background than current research articles.

Mathematical Physics with Partial Differential Equations


Author: James R. Kirkwood
Publisher: Academic Press
ISBN: 0123869110
Category: Mathematics
Page: 418
View: 2666

Continue Reading →

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Lecture Notes on Functional Analysis

With Applications to Linear Partial Differential Equations
Author: Alberto Bressan
Publisher: American Mathematical Soc.
ISBN: 0821887718
Category: Mathematics
Page: 250
View: 5097

Continue Reading →

This textbook is addressed to graduate students in mathematics or other disciplines who wish to understand the essential concepts of functional analysis and their applications to partial differential equations. The book is intentionally concise, presenting all the fundamental concepts and results but omitting the more specialized topics. Enough of the theory of Sobolev spaces and semigroups of linear operators is included as needed to develop significant applications to elliptic, parabolic, and hyperbolic PDEs. Throughout the book, care has been taken to explain the connections between theorems in functional analysis and familiar results of finite-dimensional linear algebra. The main concepts and ideas used in the proofs are illustrated with a large number of figures. A rich collection of homework problems is included at the end of most chapters. The book is suitable as a text for a one-semester graduate course.

Partial Differential Equations


Author: Jürgen Jost
Publisher: Springer Science & Business Media
ISBN: 9780387954288
Category: Mathematics
Page: 325
View: 7730

Continue Reading →

Modern and systematic treatment of main approaches; Several additions have been made to the German edition, most notably coverage of eigenvalues and expansions; Emphasis on methods relevant for both linear and nonlinear equations; Contains chapter summaries, detailed illustrations and numerous exercises

An Elementary Course in Partial Differential Equations


Author: T. Amaranath
Publisher: Jones & Bartlett Publishers
ISBN: 1449657540
Category: Mathematics
Page: 156
View: 7578

Continue Reading →

An Elementary Course in Partial Differential Equations is a concise, 1-term introduction to partial differential equations for the upper-level undergraduate/graduate course in Mathematics, Engineering and Science. Divided into two accessible parts, the first half of the text presents first-order differential equations while the later half is devoted to the study of second-order partial differential equations. Numerous applications and exercises throughout allow students to test themselves on key material discussed.

Lectures on Linear Partial Differential Equations


Author: Grigoriĭ Ilʹich Eskin
Publisher: American Mathematical Soc.
ISBN: 0821852841
Category: Mathematics
Page: 410
View: 7277

Continue Reading →

This book is a reader-friendly, relatively short introduction to the modern theory of linear partial differential equations. An effort has been made to present complete proofs in an accessible and self-contained form. The first three chapters are on elementary distribution theory and Sobolev spaces with many examples and applications to equations with constant coefficients. The following chapters study the Cauchy problem for parabolic and hyperbolic equations, boundary value problems for elliptic equations, heat trace asymptotics, and scattering theory. The book also covers microlocal analysis, including the theory of pseudodifferential and Fourier integral operators, and the propagation of singularities for operators of real principal type. Among the more advanced topics are the global theory of Fourier integral operators and the geometric optics construction in the large, the Atiyah-Singer index theorem in $\mathbb R^n$, and the oblique derivative problem.