Neutrons, X-rays and Light

Scattering Methods Applied to Soft Condensed Matter
Author: Thomas Zemb,Peter Lindner
Publisher: North-Holland
ISBN: 9780444511225
Category: Science
Page: 541
View: 5471

Continue Reading →

Scattering experiments, using X-ray, light and neutron sources (in historical order) are key techniques for studying structure and dynamics in systems containing colliods, polymers, surfactants and biological macromolecules, summarized here as soft condensed matter. The education in this field in Europe is very heterogeneous and frequently inadequate, which severely limits an efficient use of these methods, especially at large-scale facilities. The series of "Bombannes" schools and the completely revised and updated second edition of the lecture notes are devoted to a practical approach to current methodology of static and dynamic techiques. Basic information on data interpretation, on the complementarity of the different types of radiation, as well as information on recent applications and developments is presented. The aim is to avoid over - as well as under-exploitation of data.

Neutron, x-ray and light scattering

introduction to an investigative tool for colloidal and polymeric systems : proceedings of the European Workshop on Neutron, X-Ray and Light Scattering as an Investigative Tool for Colloidal and Polymeric Systems, Bombannes, France, 27 May-2June, 1990
Author: Peter Lindner
Publisher: North Holland
ISBN: N.A
Category: Science
Page: 375
View: 6223

Continue Reading →

This book is devoted to a simple practical approach to neutron, X-ray and light scattering experiments, involving model calculation of the scattering and mathematical transformation. It is intended to attract colloid and polymer scientists using scattering methods in their laboratory or at common research facilities. The primary objective is to explain the current methodology of elastic and quasi-elastic scattering techniques (avoiding both under and over-exploitation of data) rather than a general course on colloids and polymers. Basic information on data interpretation, on the complementarity of the different types of radiation, as well as information on recent applications and developments are presented.

Neutron, X-Rays and Light. Scattering Methods Applied to Soft Condensed Matter


Author: Th Zemb,P. Lindner
Publisher: North-Holland
ISBN: 9781493302260
Category: Science
Page: 552
View: 7112

Continue Reading →

Scattering experiments, using X-ray, light and neutron sources (in historical order) are key techniques for studying structure and dynamics in systems containing colliods, polymers, surfactants and biological macromolecules, summarized here as soft condensed matter. The education in this field in Europe is very heterogeneous and frequently inadequate, which severely limits an efficient use of these methods, especially at large-scale facilities. The series of "Bombannes" schools and the completely revised and updated second edition of the lecture notes are devoted to a practical approach to current methodology of static and dynamic techiques. Basic information on data interpretation, on the complementarity of the different types of radiation, as well as information on recent applications and developments is presented. The aim is to avoid over - as well as under-exploitation of data.

Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences


Author: T.A. Ezquerra,Mari Cruz Garcia-Gutierrez,Aurora Nogales,Marian Gomez
Publisher: Springer Science & Business Media
ISBN: 354095967X
Category: Science
Page: 318
View: 9884

Continue Reading →

In a ?rst approximation, certainly rough, one can de?ne as non-crystalline materials those which are neither single-crystals nor poly-crystals. Within this category, we canincludedisorderedsolids,softcondensed matter,andlivesystemsamong others. Contrary to crystals, non-crystalline materials have in common that their intrinsic structures cannot be exclusively described by a discrete and periodical function but by a continuous function with short range of order. Structurally these systems have in common the relevance of length scales between those de?ned by the atomic and the macroscopic scale. In a simple ?uid, for example, mobile molecules may freely exchange their positions, so that their new positions are permutations of their old ones. By contrast, in a complex ?uid large groups of molecules may be interc- nected so that the permutation freedom within the group is lost, while the p- mutation between the groups is possible. In this case, the dominant characteristic length, which may de?ne the properties of the system, is not the molecular size but that of the groups. A central aspect of some non-crystalline materials is that they may self-organize. This is of particular importance for Soft-matter materials. Self-organization is characterized by the spontaneous creation of regular structures at different length scales which may exhibit a certain hierarchy that controls the properties of the system. X-ray scattering and diffraction have been for more than a hundred years an essential technique to characterize the structure of materials. Quite often scattering anddiffractionphenomenaexhibitedbynon-crystallinematerialshavebeenreferred to as non-crystalline diffraction.

X-ray and Neutron Techniques for Nanomaterials Characterization


Author: Challa S.S.R. Kumar
Publisher: Springer
ISBN: 3662486067
Category: Technology & Engineering
Page: 830
View: 4395

Continue Reading →

Fifth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about X-ray and Neutron Techniques for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules


Author: Dmitri I. Svergun,Michel H. J. Koch,Peter A. Timmins,Roland P. May
Publisher: OUP Oxford
ISBN: 0191507032
Category: Science
Page: 368
View: 3826

Continue Reading →

Small-angle scattering of X-rays (SAXS) and neutrons (SANS) is an established method for the structural characterization of biological objects in a broad size range from individual macromolecules (proteins, nucleic acids, lipids) to large macromolecular complexes. SAXS/SANS is complementary to the high resolution methods of X-ray crystallography and nuclear magnetic resonance, allowing for hybrid modeling and also accounting for available biophysical and biochemical data. Quantitative characterization of flexible macromolecular systems and mixtures has recently become possible. SAXS/SANS measurements can be easily performed in different conditions by adding ligands or binding partners, and by changing physical and/or chemical characteristics of the solvent to provide information on the structural responses. The technique provides kinetic information about processes like folding and assembly and also allows one to analyze macromolecular interactions. The major factors promoting the increasingly active use of SAXS/SANS are modern high brilliance X-ray and neutron sources, novel data analysis methods, and automation of the experiment, data processing and interpretation. In this book, following the presentation of the basics of scattering from isotropic macromolecular solutions, modern instrumentation, experimental practice and advanced analysis techniques are explained. Advantages of X-rays (rapid data collection, small sample volumes) and of neutrons (contrast variation by hydrogen/deuterium exchange) are specifically highlighted. Examples of applications of the technique to different macromolecular systems are considered with specific emphasis on the synergistic use of SAXS/SANS with other structural, biophysical and computational techniques.

Spectroscopy in Biology and Chemistry

Neutron, X-Ray, Laser
Author: Sow-Hsin Chen,Sidney Yip
Publisher: Academic Press
ISBN: 1483217450
Category: Science
Page: 424
View: 2653

Continue Reading →

Spectroscopy in Biology and Chemistry discusses the use of thermal neutron diffraction and inelastic scattering, and the related techniques of x-ray diffraction, Raman and Rayleigh scattering, in investigating biological macromolecules and chemical systems. The book describes neutron, x-ray and laser spectroscopy; quasielastic scattering in neutron and laser spectroscopy; and interatomic forces, molecular structure and molecular vibrations. The text also discusses the x-ray crystallography of biological molecules; neutron diffraction studies of hydrogen bonding in organic and biochemical systems; and comparative x-ray and neutron diffraction from nerve myelin membranes. Neutron spectroscopy of chain polymers; chemical and biological applications of neutron inelastic scattering; and neutron scattering and optical studies of molecular vibrations are also considered. The book further tackles small angle neutron scattering from polymers; the use of tunable laser resonance Raman spectroscopy in biology; and the use photon correlation spectroscopy in biology. Students and faculty members in physics, chemistry, and biology, and research workers in related fields will find the text invaluable.

Scattering Methods and their Application in Colloid and Interface Science


Author: Otto Glatter
Publisher: Elsevier
ISBN: 0128135816
Category: Science
Page: 404
View: 1577

Continue Reading →

Scattering Methods and their Application in Colloid and Interface Science offers an overview of small-angle X-ray and neutron scattering techniques (SAXS & SANS), as well as static and dynamic light scattering (SLS & DLS). These scattering techniques are central to the study of soft matter, such as colloidal dispersions and surfactant self-assembly. The theoretical concepts are followed by an overview of instrumentation and a detailed description of the evaluation techniques in the first part of the book. In the second part, several typical application examples are used to show the strength and limitations of these techniques. Features the latest input from the world-leading expert with personal experience in all the fields covered (SAXS, SANS, SLS and DLS) Includes unified notation throughout the book to enhance its readability Provides—in a single source—scattering theory, evaluation of techniques and a variety of applications

Interaction of Photons and Neutrons with Matter

An Introduction
Author: Sow-Hsin Chen,Michael Kotlarchyk
Publisher: World Scientific
ISBN: 9789810220266
Category: Science
Page: 400
View: 4867

Continue Reading →

This book is based on lecture notes developed for a one-semester graduate course entitled The Interaction of Radiation with Matter, taught in the Department of Nuclear Engineering at the Massachusetts Institute of Technology. The main objective of the course is to teach enough quantum and classical radiation theory to allow students in engineering and the applied sciences to understand and have access to the vast literature on applications of ionizing and non-ionizing radiation in materials research. Besides presenting the fundamental physics of radiation interactions, the book devotes individual chapters to some of the important modern-day experimental tools, such as nuclear magnetic resonance, photon correlation spectroscopy, and the various types of neutron, x-ray and light-scattering techniques.

Neutron and X-ray Optics


Author: Jay Theodore Cremer, Jr.
Publisher: Newnes
ISBN: 0124071597
Category: Science
Page: 1124
View: 3656

Continue Reading →

Covering a wide range of topics related to neutron and x-ray optics, this book explores the aspects of neutron and x-ray optics and their associated background and applications in a manner accessible to both lower-level students while retaining the detail necessary to advanced students and researchers. It is a self-contained book with detailed mathematical derivations, background, and physical concepts presented in a linear fashion. A wide variety of sources were consulted and condensed to provide detailed derivations and coverage of the topics of neutron and x-ray optics as well as the background material needed to understand the physical and mathematical reasoning directly related or indirectly related to the theory and practice of neutron and x-ray optics. The book is written in a clear and detailed manner, making it easy to follow for a range of readers from undergraduate and graduate science, engineering, and medicine. It will prove beneficial as a standalone reference or as a complement to textbooks. Supplies a historical context of covered topics. Detailed presentation makes information easy to understand for researchers within or outside the field. Incorporates reviews of all relevant literature in one convenient resource.

Neutron Scattering in Biology

Techniques and Applications
Author: Jörg Fitter,Thomas Gutberlet,John Katsaras
Publisher: Springer Science & Business Media
ISBN: 3540291113
Category: Science
Page: 560
View: 9153

Continue Reading →

The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.

Biophysical Techniques


Author: Iain Campbell
Publisher: Oxford University Press
ISBN: 0199642141
Category: Medical
Page: 353
View: 7888

Continue Reading →

Biophysical Techniques explains in a readily-accessible way the basics of the various biophysical methods available so students can understand the principles behind the different methods used, and begin to appreciate which tools can be used to probe different biological questions, and the pros and cons of each.

Introduction to Texture Analysis

Macrotexture, Microtexture and Orientation Mapping
Author: Valerie Randle,Olaf Engler
Publisher: CRC Press
ISBN: 9789056992248
Category: Technology & Engineering
Page: 388
View: 1908

Continue Reading →

Encompassing the concepts, practice, and application of orientation analysis, Introduction to Texture Analysis is an essential reference source for reserachers in textiles. The author uses an accessible style to share her expertise, providing comprehensive coverage of the theory and practice of the texture techniques now available and discusses their applications in research and industry. The text considers the merits of each technique for specific applications. Case studies expand upon the author's explanations and help illustrate the main principles involved. Topics include applications of diffraction, SEM- and TEM-based techniques, and crystallographic analyses.

Colloids and Interfaces with Surfactants and Polymers

An Introduction
Author: James William Goodwin,Jim Goodwin
Publisher: John Wiley & Sons
ISBN: 9780470841433
Category: Science
Page: 285
View: 8804

Continue Reading →

Many commercial systems are complex mixtures but in most cases the basic rules apply and surprises only occur when there is a quite specific interaction present. Hence, by using this text, the user will always have the fundamentals readily to hand.

The Physics of Living Processes

A Mesoscopic Approach
Author: Thomas Andrew Waigh
Publisher: John Wiley & Sons
ISBN: 1118698274
Category: Science
Page: 624
View: 515

Continue Reading →

This full-colour undergraduate textbook, based on a two semestercourse, presents the fundamentals of biological physics,introducing essential modern topics that include cells, polymers,polyelectrolytes, membranes, liquid crystals, phase transitions,self-assembly, photonics, fluid mechanics, motility, chemicalkinetics, enzyme kinetics, systems biology, nerves, physiology, thesenses, and the brain. The comprehensive coverage, featuring in-depth explanations ofrecent rapid developments, demonstrates this to be one of the mostdiverse of modern scientific disciplines. The Physics of Living Processes: A Mesoscopic Approach iscomprised of five principal sections: • Building Blocks • Soft Condensed Matter Techniques in Biology • Experimental Techniques • Systems Biology • Spikes, Brains and the Senses The unique focus is predominantly on the mesoscale —structures on length scales between those of atoms and themacroscopic behaviour of whole organisms. The connections betweenmolecules and their emergent biological phenomena provide a novelintegrated perspective on biological physics, making this animportant text across a variety of scientific disciplines includingbiophysics, physics, physical chemistry, chemical engineering andbioengineering. An extensive set of worked tutorial questions are included,which will equip the reader with a range of new physical tools toapproach problems in the life sciences from medicine,pharmaceutical science and agriculture.

Neutron and X-ray Spectroscopy


Author: Françoise Hippert,Erik Geissler,Jean Louis Hodeau,Eddy Lelièvre-Berna,Jean-René Regnard
Publisher: Springer Science & Business Media
ISBN: 1402033370
Category: Science
Page: 566
View: 8089

Continue Reading →

- Up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources - Multi-technique approach set around a central theme, rather than a monograph on one technique - Emphasis on the complementarity of neutron spectroscopy and X-ray spectroscopy which are usually treated in separate books

Handbook of Biopolymer-Based Materials

From Blends and Composites to Gels and Complex Networks
Author: Sabu Thomas,Dominique Durand,Christophe Chassenieux,P. Jyotishkumar
Publisher: John Wiley & Sons
ISBN: 3527652477
Category: Technology & Engineering
Page: 988
View: 7204

Continue Reading →

This first systematic scientific reference in the area of micro- and nanostructured biopolymer systems discusses in two volumes the morphology, structure, dynamics, properties and applications of all important biopolymers, as well as their blends, composites, interpenetrating networks and gels. Selected leading researchers from industry, academia, government and private research institutions around the globe comprehensively review recent accomplishments in the field. They examine the current state of the art, new challenges, and opportunities, discussing all the synthetic routes to the generation of both micro- and nano-morphologies, as well as the synthesis, characterization and application of porous biopolymers. An outstanding resource for anyone involved in the fi eld of eco-friendly biomaterials for advanced technologies.