Measure, Integral and Probability


Author: Marek Capinski,(Peter) Ekkehard Kopp
Publisher: Springer Science & Business Media
ISBN: 1447136314
Category: Mathematics
Page: 227
View: 4843

Continue Reading →

This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

Wahrscheinlichkeitstheorie und Stochastische Prozesse


Author: Michael Mürmann
Publisher: Springer-Verlag
ISBN: 364238160X
Category: Mathematics
Page: 428
View: 8958

Continue Reading →

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

Maß und Integral


Author: Martin Brokate,Götz Kersting
Publisher: Springer-Verlag
ISBN: 303460646X
Category: Mathematics
Page: 160
View: 8753

Continue Reading →

Der Integralbegriff in seiner Ausprägung durch Henri Lebesgue ist ein grundlegendes Werkzeug in der modernen Analysis, Numerik und Stochastik. Für Lehrveranstaltungen zu diesen Gebieten der Mathematik bereiten die Autoren wesentliche Sachverhalte in kompakter Weise auf. Das Buch liefert Orientierung und Material für verschiedene Varianten zwei- oder vierstündiger Lehrveranstaltungen. In einem ergänzenden Abschnitt werden um den Begriff der Konvexität herum Verbünde zur Funktionalanalysis hergestellt.

Mathematics for Finance

An Introduction to Financial Engineering
Author: Marek Capinski,Tomasz Zastawniak
Publisher: Springer
ISBN: 1852338466
Category: Business & Economics
Page: 314
View: 6282

Continue Reading →

This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.

Financial Mathematics

A Comprehensive Treatment
Author: Giuseppe Campolieti,Roman N. Makarov
Publisher: CRC Press
ISBN: 1439892423
Category: Business & Economics
Page: 829
View: 7953

Continue Reading →

Versatile for Several Interrelated Courses at the Undergraduate and Graduate Levels Financial Mathematics: A Comprehensive Treatment provides a unified, self-contained account of the main theory and application of methods behind modern-day financial mathematics. Tested and refined through years of the authors’ teaching experiences, the book encompasses a breadth of topics, from introductory to more advanced ones. Accessible to undergraduate students in mathematics, finance, actuarial science, economics, and related quantitative areas, much of the text covers essential material for core curriculum courses on financial mathematics. Some of the more advanced topics, such as formal derivative pricing theory, stochastic calculus, Monte Carlo simulation, and numerical methods, can be used in courses at the graduate level. Researchers and practitioners in quantitative finance will also benefit from the combination of analytical and numerical methods for solving various derivative pricing problems. With an abundance of examples, problems, and fully worked out solutions, the text introduces the financial theory and relevant mathematical methods in a mathematically rigorous yet engaging way. Unlike similar texts in the field, this one presents multiple problem-solving approaches, linking related comprehensive techniques for pricing different types of financial derivatives. The book provides complete coverage of both discrete- and continuous-time financial models that form the cornerstones of financial derivative pricing theory. It also presents a self-contained introduction to stochastic calculus and martingale theory, which are key fundamental elements in quantitative finance.

Wahrscheinlichkeitsrechnung und Statistik


Author: Robert Hafner
Publisher: Springer-Verlag
ISBN: 3709169445
Category: Mathematics
Page: 512
View: 9238

Continue Reading →

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

Special Relativity


Author: Nicholas M.J. Woodhouse
Publisher: Springer-Verlag
ISBN: 3540466762
Category: Science
Page: 88
View: 3699

Continue Reading →

Reelle und Komplexe Analysis


Author: Walter Rudin
Publisher: Walter de Gruyter
ISBN: 9783486591866
Category: Analysis - Lehrbuch
Page: 499
View: 3703

Continue Reading →

Besonderen Wert legt Rudin darauf, dem Leser die Zusammenhänge unterschiedlicher Bereiche der Analysis zu vermitteln und so die Grundlage für ein umfassenderes Verständnis zu schaffen. Das Werk zeichnet sich durch seine wissenschaftliche Prägnanz und Genauigkeit aus und hat damit die Entwicklung der modernen Analysis in nachhaltiger Art und Weise beeinflusst. Der "Baby-Rudin" gehört weltweit zu den beliebtesten Lehrbüchern der Analysis und ist in 13 Sprachen übersetzt. 1993 wurde es mit dem renommierten Steele Prize for Mathematical Exposition der American Mathematical Society ausgezeichnet. Übersetzt von Uwe Krieg.

Probability Models


Author: John Haigh
Publisher: Springer Science & Business Media
ISBN: 144715343X
Category: Mathematics
Page: 287
View: 8502

Continue Reading →

The purpose of this book is to provide a sound introduction to the study of real-world phenomena that possess random variation. It describes how to set up and analyse models of real-life phenomena that involve elements of chance. Motivation comes from everyday experiences of probability, such as that of a dice or cards, the idea of fairness in games of chance, and the random ways in which, say, birthdays are shared or particular events arise. Applications include branching processes, random walks, Markov chains, queues, renewal theory, and Brownian motion. This textbook contains many worked examples and several chapters have been updated and expanded for the second edition. Some mathematical knowledge is assumed. The reader should have the ability to work with unions, intersections and complements of sets; a good facility with calculus, including integration, sequences and series; and appreciation of the logical development of an argument. Probability Models is designed to aid students studying probability as part of an undergraduate course on mathematics or mathematics and statistics.

Basic Stochastic Processes

A Course Through Exercises
Author: Zdzislaw Brzezniak,Tomasz Zastawniak
Publisher: Springer Science & Business Media
ISBN: 1447105338
Category: Mathematics
Page: 226
View: 2975

Continue Reading →

Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

Lineare Funktionalanalysis

Eine anwendungsorientierte Einführung
Author: Hans Wilhelm Alt
Publisher: Springer-Verlag
ISBN: 3662083868
Category: Mathematics
Page: 294
View: 8464

Continue Reading →

Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse


Author: Kai L. Chung
Publisher: Springer-Verlag
ISBN: 3642670334
Category: Mathematics
Page: 346
View: 6282

Continue Reading →

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

Distributionen Und Hilbertraumoperatoren

Mathematische Methoden Der Physik
Author: Philippe Blanchard,Erwin Brüning
Publisher: Springer
ISBN: 9783211825075
Category: Science
Page: 375
View: 2956

Continue Reading →

Das Buch bietet eine Einführung in die zum Studium der Theoretischen Physik notwendigen mathematischen Grundlagen. Der erste Teil des Buches beschäftigt sich mit der Theorie der Distributionen und vermittelt daneben einige Grundbegriffe der linearen Funktionalanalysis. Der zweite Teil baut darauf auf und gibt eine auf das Wesentliche beschränkte Einführung in die Theorie der linearen Operatoren in Hilbert-Räumen. Beide Teile werden von je einer Übersicht begleitet, die die zentralen Ideen und Begriffe knapp erläutert und den Inhalt kurz beschreibt. In den Anhängen werden einige grundlegende Konstruktionen und Konzepte der Funktionalanalysis dargestellt und wichtige Konsequenzen entwickelt.

Analysis III


Author: Herbert Amann,Joachim Escher
Publisher: Springer-Verlag
ISBN: 3764388846
Category: Mathematics
Page: 480
View: 944

Continue Reading →

Der dritte und letzte Band dieser Reihe ist der Integrationstheorie und den Grundlagen der globalen Analysis gewidmet. Klarer Aufbau, eine strukturierte Darstellung der Theorie und zahlreiche Beispiele sowie konkrete Rechnungen und Übungsaufgaben erleichtern die Einübung des Stoffes. Sie machen dieses Lehrbuch zu einem verlässlichen Begleiter durch das gesamte Studium. Die Autoren geben ihren Lesern geeignete Werkzeuge für die weitere Beschäftigung mit der Mathematik an die Hand und liefern zahlreiche Ausblicke auf weiterführende Theorien.

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik
Author: Detlef Laugwitz
Publisher: Springer-Verlag
ISBN: 3034889836
Category: Mathematics
Page: 348
View: 4250

Continue Reading →

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."