Mathematics Rebooted

A Fresh Approach to Understanding
Author: Lara Alcock
Publisher: Oxford University Press
ISBN: 0198803796
Category: Mathematics
Page: 232
View: 4450

Continue Reading →

This book is about mathematical thinking, learning and understanding. It is about ways in which good representations capture mathematical ideas, and about building broad and deep knowledge by understanding the links between those ideas. It draws on research in mathematics education and psychology to explain why some misunderstandings and confusions arise for almost everyone, and it describes ways to think about mathematical ideas correctly and with confidence.

How to Think about Analysis


Author: Lara Alcock
Publisher: Oxford University Press, USA
ISBN: 0198723539
Category: Mathematics
Page: 246
View: 2471

Continue Reading →

Analysis is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared.

Closing the Gap

The Quest to Understand Prime Numbers
Author: Vicky Neale
Publisher: Oxford University Press
ISBN: 0191092436
Category: Mathematics
Page: 208
View: 3729

Continue Reading →

In 2013, a little known mathematician in his late 50s stunned the mathematical community with a breakthrough on an age-old problem about prime numbers. Since then, there has been further dramatic progress on the problem, thanks to the efforts of a large-scale online collaborative effort of a type that would have been unthinkable in mathematics a couple of decades ago, and the insight and creativity of a young mathematician at the start of his career. Prime numbers have intrigued, inspired and infuriated mathematicians for millennia. Every school student studies prime numbers and can appreciate their beauty, and yet mathematicians' difficulty with answering some seemingly simple questions about them reveals the depth and subtlety of prime numbers. Vicky Neale charts the recent progress towards proving the famous Twin Primes Conjecture, and the very different ways in which the breakthroughs have been made: a solo mathematician working in isolation and obscurity, and a large collaboration that is more public than any previous collaborative effort in mathematics and that reveals much about how mathematicians go about their work. Interleaved with this story are highlights from a significantly older tale, going back two thousand years and more, of mathematicians' efforts to comprehend the beauty and unlock the mysteries of the prime numbers.

1089 and All that : a Journey Into Mathematics


Author: D. J. Acheson
Publisher: Oxford University Press, USA
ISBN: 9780198516231
Category: Mathematics
Page: 178
View: 3211

Continue Reading →

This excellent book, written by the established author David Acheson, makes mathematics accessible to everyone. Providing an entertaining and witty overview of the subject, the text includes several fascinating puzzles, and is accompanied by numerous illustrations and sketches by world famous cartoonists. This unusual book is one of the most readable explanations of mathematics available.

The Calculus Story

A Mathematical Adventure
Author: David Acheson
Publisher: Oxford University Press
ISBN: 0192526715
Category: Mathematics
Page: 160
View: 6229

Continue Reading →

Calculus is the key to much of modern science and engineering. It is the mathematical method for the analysis of things that change, and since in the natural world we are surrounded by change, the development of calculus was a huge breakthrough in the history of mathematics. But it is also something of a mathematical adventure, largely because of the way infinity enters at virtually every twist and turn... In The Calculus Story David Acheson presents a wide-ranging picture of calculus and its applications, from ancient Greece right up to the present day. Drawing on their original writings, he introduces the people who helped to build our understanding of calculus. With a step by step treatment, he demonstrates how to start doing calculus, from the very beginning.

How to Study as a Mathematics Major


Author: Lara Alcock
Publisher: OUP Oxford
ISBN: 0191637351
Category: Mathematics
Page: 288
View: 2772

Continue Reading →

Every year, thousands of students in the USA declare mathematics as their major. Many are extremely intelligent and hardworking. However, even the best will encounter challenges, because upper-level mathematics involves not only independent study and learning from lectures, but also a fundamental shift from calculation to proof. This shift is demanding but it need not be mysterious — research has revealed many insights into the mathematical thinking required, and this book translates these into practical advice for a student audience. It covers every aspect of studying as a mathematics major, from tackling abstract intellectual challenges to interacting with professors and making good use of study time. Part 1 discusses the nature of upper-level mathematics, and explains how students can adapt and extend their existing skills in order to develop good understanding. Part 2 covers study skills as these relate to mathematics, and suggests practical approaches to learning effectively while enjoying undergraduate life. As the first mathematics-specific study guide, this friendly, practical text is essential reading for any mathematics major.

How to Think Like a Mathematician

A Companion to Undergraduate Mathematics
Author: Kevin Houston
Publisher: Cambridge University Press
ISBN: 9781139477055
Category: Mathematics
Page: N.A
View: 9739

Continue Reading →

Looking for a head start in your undergraduate degree in mathematics? Maybe you've already started your degree and feel bewildered by the subject you previously loved? Don't panic! This friendly companion will ease your transition to real mathematical thinking. Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.

Math for Scientists

Refreshing the Essentials
Author: Natasha Maurits,Branislava Ćurčić-Blake
Publisher: Springer
ISBN: 3319573543
Category: Mathematics
Page: 233
View: 5966

Continue Reading →

This book reviews math topics relevant to non-mathematics students and scientists, but which they may not have seen or studied for a while. These math issues can range from reading mathematical symbols, to using complex numbers, dealing with equations involved in calculating medication equivalents, the General Linear Model (GLM) used in e.g. neuroimaging analysis, finding the minimum of a function, independent component analysis, or filtering approaches. Almost every student or scientist, will at some point run into mathematical formulas or ideas in scientific papers that may be hard to understand, given that formal math education may be some years ago. In this book we will explain the theory behind many of these mathematical ideas and expressions and provide readers with the tools to better understand them. We will revisit high school mathematics and extend and relate this to the mathematics you need to understand the math you may encounter in the course of your research. This book will help you understand the math and formulas in the scientific papers you read. To achieve this goal, each chapter mixes theory with practical pen-and-paper exercises such that you (re)gain experience with solving math problems yourself. Mnemonics will be taught whenever possible. To clarify the math and help readers apply it, each chapter provides real-world and scientific examples.

An Introduction to Mathematical Modeling


Author: Edward A. Bender
Publisher: Courier Corporation
ISBN: 0486137120
Category: Mathematics
Page: 272
View: 514

Continue Reading →

Accessible text features over 100 reality-based examples pulled from the science, engineering, and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.

Music by the Numbers

From Pythagoras to Schoenberg
Author: Eli Maor
Publisher: Princeton University Press
ISBN: 1400889898
Category: Mathematics
Page: 176
View: 4302

Continue Reading →

How music has influenced mathematics, physics, and astronomy from ancient Greece to the twentieth century Music is filled with mathematical elements, the works of Bach are often said to possess a math-like logic, and Igor Stravinsky said "musical form is close to mathematics," while Arnold Schoenberg, Iannis Xenakis, and Karlheinz Stockhausen went further, writing music explicitly based on mathematical principles. Yet Eli Maor argues that music has influenced math at least as much as math has influenced music. Starting with Pythagoras, proceeding through the work of Schoenberg, and ending with contemporary string theory, Music by the Numbers tells a fascinating story of composers, scientists, inventors, and eccentrics who played a role in the age-old relationship between music, mathematics, and the sciences, especially physics and astronomy. Music by the Numbers explores key moments in this history, particularly how problems originating in music have inspired mathematicians for centuries. Perhaps the most famous of these problems is the vibrating string, which pitted some of the greatest mathematicians of the eighteenth century against each other in a debate that lasted more than fifty years and that eventually led to the development of post-calculus mathematics. Other highlights in the book include a comparison between meter in music and metric in geometry, complete with examples of rhythmic patterns from Bach to Stravinsky, and an exploration of a suggestive twentieth-century development: the nearly simultaneous emergence of Einstein's theory of relativity and Schoenberg's twelve-tone system. Weaving these compelling historical episodes with Maor's personal reflections as a mathematician and lover of classical music, Music by the Numbers will delight anyone who loves mathematics and music.

Reverse Mathematics

Proofs from the Inside Out
Author: John Stillwell
Publisher: Princeton University Press
ISBN: 1400889030
Category: Mathematics
Page: 200
View: 8230

Continue Reading →

This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are needed to prove a given theorem? Only in the last two hundred years have some of these questions been answered, and only in the last forty years has a systematic approach been developed. In Reverse Mathematics, John Stillwell gives a representative view of this field, emphasizing basic analysis—finding the “right axioms” to prove fundamental theorems—and giving a novel approach to logic. Stillwell introduces reverse mathematics historically, describing the two developments that made reverse mathematics possible, both involving the idea of arithmetization. The first was the nineteenth-century project of arithmetizing analysis, which aimed to define all concepts of analysis in terms of natural numbers and sets of natural numbers. The second was the twentieth-century arithmetization of logic and computation. Thus arithmetic in some sense underlies analysis, logic, and computation. Reverse mathematics exploits this insight by viewing analysis as arithmetic extended by axioms about the existence of infinite sets. Remarkably, only a small number of axioms are needed for reverse mathematics, and, for each basic theorem of analysis, Stillwell finds the “right axiom” to prove it. By using a minimum of mathematical logic in a well-motivated way, Reverse Mathematics will engage advanced undergraduates and all mathematicians interested in the foundations of mathematics.

A Brief History of Numbers


Author: Leo Corry
Publisher: OUP Oxford
ISBN: 0191007072
Category: Mathematics
Page: 368
View: 9994

Continue Reading →

The world around us is saturated with numbers. They are a fundamental pillar of our modern society, and accepted and used with hardly a second thought. But how did this state of affairs come to be? In this book, Leo Corry tells the story behind the idea of number from the early days of the Pythagoreans, up until the turn of the twentieth century. He presents an overview of how numbers were handled and conceived in classical Greek mathematics, in the mathematics of Islam, in European mathematics of the middle ages and the Renaissance, during the scientific revolution, all the way through to the mathematics of the 18th to the early 20th century. Focusing on both foundational debates and practical use numbers, and showing how the story of numbers is intimately linked to that of the idea of equation, this book provides a valuable insight to numbers for undergraduate students, teachers, engineers, professional mathematicians, and anyone with an interest in the history of mathematics.

Maths Hacks


Author: Richard Cochrane
Publisher: Cassell
ISBN: 1788400445
Category: Mathematics
Page: 208
View: 7493

Continue Reading →

Everything you need to know about 100 key mathematical concepts condensed into easy-to-understand sound bites designed to stick in your memory and give you an instant grasp of the concept. On each topic, you'll start with a helicopter overview of the subject, which will give you an introduction to the idea and some context surrounding it. Next, you'll zoom in on the core elements of the theory, with clear explanation of each point to make sure you really understand the concept, along with simple examples that everyone can follow. Finally, you'll be given a one-liner hack to really make the theory stick in your mind. The perfect introduction to algebra, logic, probability and much more, this is a great new way to learn about the most important mathematical ideas and concepts in a way that makes them easy to recall even months after reading the book. Topics covered include: Numbers Algebra Logic Geometry Probability Computer science Applied mathematics Mechanics Statistics Set Theory

Introduction to Mathematical Thinking


Author: Keith J. Devlin
Publisher: N.A
ISBN: 9780615653631
Category: Mathematics
Page: 92
View: 2883

Continue Reading →

In the twenty-first century, everyone can benefit from being able to think mathematically. This is not the same as "doing math." The latter usually involves the application of formulas, procedures, and symbolic manipulations; mathematical thinking is a powerful way of thinking about things in the world -- logically, analytically, quantitatively, and with precision. It is not a natural way of thinking, but it can be learned.Mathematicians, scientists, and engineers need to "do math," and it takes many years of college-level education to learn all that is required. Mathematical thinking is valuable to everyone, and can be mastered in about six weeks by anyone who has completed high school mathematics. Mathematical thinking does not have to be about mathematics at all, but parts of mathematics provide the ideal target domain to learn how to think that way, and that is the approach taken by this short but valuable book.The book is written primarily for first and second year students of science, technology, engineering, and mathematics (STEM) at colleges and universities, and for high school students intending to study a STEM subject at university. Many students encounter difficulty going from high school math to college-level mathematics. Even if they did well at math in school, most are knocked off course for a while by the shift in emphasis, from the K-12 focus on mastering procedures to the "mathematical thinking" characteristic of much university mathematics. Though the majority survive the transition, many do not. To help them make the shift, colleges and universities often have a "transition course." This book could serve as a textbook or a supplementary source for such a course.Because of the widespread applicability of mathematical thinking, however, the book has been kept short and written in an engaging style, to make it accessible to anyone who seeks to extend and improve their analytic thinking skills. Going beyond a basic grasp of analytic thinking that everyone can benefit from, the STEM student who truly masters mathematical thinking will find that college-level mathematics goes from being confusing, frustrating, and at times seemingly impossible, to making sense and being hard but doable.Dr. Keith Devlin is a professional mathematician at Stanford University and the author of 31 previous books and over 80 research papers. His books have earned him many awards, including the Pythagoras Prize, the Carl Sagan Award, and the Joint Policy Board for Mathematics Communications Award. He is known to millions of NPR listeners as "the Math Guy" on Weekend Edition with Scott Simon. He writes a popular monthly blog "Devlin's Angle" for the Mathematical Association of America, another blog under the name "profkeithdevlin", and also blogs on various topics for the Huffington Post.

Applied Mathematics: A Very Short Introduction


Author: Alain Goriely
Publisher: Oxford University Press
ISBN: 0191068888
Category: Mathematics
Page: 144
View: 8943

Continue Reading →

Mathematics is playing an increasing important role in society and the sciences, enhancing our ability to use models and handle data. While pure mathematics is mostly interested in abstract structures, applied mathematics sits at the interface between this abstract world and the world in which we live. This area of mathematics takes its nourishment from society and science and, in turn, provides a unified way to understand problems arising in diverse fields. This Very Short Introduction presents a compact yet comprehensive view of the field of applied mathematics, and explores its relationships with (pure) mathematics, science, and engineering. Explaining the nature of applied mathematics, Alain Goriely discusses its early achievements in physics and engineering, and its development as a separate field after World War II. Using historical examples, current applications, and challenges, Goriely illustrates the particular role that mathematics plays in the modern sciences today and its far-reaching potential. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Towards Higher Mathematics: A Companion


Author: Richard Earl
Publisher: Cambridge University Press
ISBN: 1107162386
Category: Mathematics
Page: 536
View: 4139

Continue Reading →

Containing a large and varied set of problems, this rich resource will allow students to stretch their mathematical abilities beyond the school syllabus, and bridge the gap to university-level mathematics. Many proofs are provided to better equip students for the transition to university. The author covers substantial extension material using the language of sixth form mathematics, thus enabling students to understand the more complex material. Exercises are carefully chosen to introduce students to some central ideas, without building up large amounts of abstract technology. There are over 1500 carefully graded exercises, with hints included in the text, and solutions available online. Historical and contextual asides highlight each area of mathematics and show how it has developed over time.

Elements of Mathematics

From Euclid to Gödel
Author: John Stillwell
Publisher: Princeton University Press
ISBN: 1400880564
Category: Mathematics
Page: 440
View: 4438

Continue Reading →

Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics—but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered as such, and great mathematical advances and discoveries had to occur in order for certain subjects to become "elementary." Stillwell examines elementary mathematics from a distinctive twenty-first-century viewpoint and describes not only the beauty and scope of the discipline, but also its limits. From Gaussian integers to propositional logic, Stillwell delves into arithmetic, computation, algebra, geometry, calculus, combinatorics, probability, and logic. He discusses how each area ties into more advanced topics to build mathematics as a whole. Through a rich collection of basic principles, vivid examples, and interesting problems, Stillwell demonstrates that elementary mathematics becomes advanced with the intervention of infinity. Infinity has been observed throughout mathematical history, but the recent development of "reverse mathematics" confirms that infinity is essential for proving well-known theorems, and helps to determine the nature, contours, and borders of elementary mathematics. Elements of Mathematics gives readers, from high school students to professional mathematicians, the highlights of elementary mathematics and glimpses of the parts of math beyond its boundaries.

Beautiful, Simple, Exact, Crazy

Mathematics in the Real World
Author: Apoorva Khare,Anna Lachowska
Publisher: Yale University Press
ISBN: 0300190891
Category: Mathematics
Page: 480
View: 1284

Continue Reading →

In this vibrant work, which is ideal for both teaching and learning, Apoorva Khare and Anna Lachowska explain the mathematics essential for understanding and appreciating our quantitative world. They show with examples that mathematics is a key tool in the creation and appreciation of art, music, and literature, not just science and technology. The book covers basic mathematical topics from logarithms to statistics, but the authors eschew mundane finance and probability problems. Instead, they explain how modular arithmetic helps keep our online transactions safe, how logarithms justify the twelve-tone scale commonly used in music, and how transmissions by deep space probes are similar to knights serving as messengers for their traveling prince. Ideal for coursework in introductory mathematics and requiring no knowledge of calculus, Khare and Lachowska s enlightening mathematics tour will appeal to a wide audience."

Mathematics in Everyday Life


Author: John Haigh
Publisher: Springer
ISBN: 3319279394
Category: Mathematics
Page: 159
View: 1438

Continue Reading →

How does mathematics impact everyday events? The purpose of this book is to show a range of examples where mathematics can be seen at work in everyday life. From money (APR, mortgage repayments, personal finance), simple first and second order ODEs, sport and games (tennis, rugby, athletics, darts, tournament design, soccer, snooker), business (stock control, linear programming, check digits, promotion policies, investment), the social sciences (voting methods, Simpson’s Paradox, drug testing, measurements of inequality) to TV game shows and even gambling (lotteries, roulette, poker, horse racing), the mathematics behind commonplace events is explored. Fully worked examples illustrate the ideas discussed and each chapter ends with a collection of exercises. Everyday Mathematics supports other first year modules by giving students extra practice in working with calculus, linear algebra, geometry, trigonometry and probability. Secondary/high school level mathematics is all that is required for students to understand the material. Those students whose degree course includes writing an extended mathematical essay will find many suitable topics here, with pointers to extend and develop the material.

A Most Elegant Equation

Euler's Formula and the Beauty of Mathematics
Author: David Stipp
Publisher: Basic Books
ISBN: 0465093787
Category: Mathematics
Page: 240
View: 7624

Continue Reading →

An award-winning science writer introduces us to mathematics using the extraordinary equation that unites five of mathematics' most important numbers Bertrand Russell wrote that mathematics can exalt "as surely as poetry." This is especially true of one equation: ei(pi) + 1 = 0, the brainchild of Leonhard Euler, the Mozart of mathematics. More than two centuries after Euler's death, it is still regarded as a conceptual diamond of unsurpassed beauty. Called Euler's identity or God's equation, it includes just five numbers but represents an astonishing revelation of hidden connections. It ties together everything from basic arithmetic to compound interest, the circumference of a circle, trigonometry, calculus, and even infinity. In David Stipp's hands, Euler's identity formula becomes a contemplative stroll through the glories of mathematics. The result is an ode to this magical field.