Mathematical Statistics and Data Analysis


Author: John A. Rice
Publisher: Cengage Learning
ISBN: 0534399428
Category: Mathematics
Page: 688
View: 2692

Continue Reading →

This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython
Author: Wes McKinney
Publisher: O'Reilly
ISBN: 3960102143
Category: Computers
Page: 542
View: 769

Continue Reading →

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen
Author: Ian H. Witten,Eibe Frank
Publisher: N.A
ISBN: 9783446215337
Category:
Page: 386
View: 1512

Continue Reading →

Algorithmen - Eine Einführung


Author: Thomas H. Cormen,Charles E. Leiserson,Ronald Rivest,Clifford Stein
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110522012
Category: Computers
Page: 1339
View: 5310

Continue Reading →

Der "Cormen" bietet eine umfassende und vielseitige Einführung in das moderne Studium von Algorithmen. Es stellt viele Algorithmen Schritt für Schritt vor, behandelt sie detailliert und macht deren Entwurf und deren Analyse allen Leserschichten zugänglich. Sorgfältige Erklärungen zur notwendigen Mathematik helfen, die Analyse der Algorithmen zu verstehen. Den Autoren ist es dabei geglückt, Erklärungen elementar zu halten, ohne auf Tiefe oder mathematische Exaktheit zu verzichten. Jedes der weitgehend eigenständig gestalteten Kapitel stellt einen Algorithmus, eine Entwurfstechnik, ein Anwendungsgebiet oder ein verwandtes Thema vor. Algorithmen werden beschrieben und in Pseudocode entworfen, der für jeden lesbar sein sollte, der schon selbst ein wenig programmiert hat. Zahlreiche Abbildungen verdeutlichen, wie die Algorithmen arbeiten. Ebenfalls angesprochen werden Belange der Implementierung und andere technische Fragen, wobei, da Effizienz als Entwurfskriterium betont wird, die Ausführungen eine sorgfältige Analyse der Laufzeiten der Programme mit ein schließen. Über 1000 Übungen und Problemstellungen und ein umfangreiches Quellen- und Literaturverzeichnis komplettieren das Lehrbuch, dass durch das ganze Studium, aber auch noch danach als mathematisches Nachschlagewerk oder als technisches Handbuch nützlich ist. Für die dritte Auflage wurde das gesamte Buch aktualisiert. Die Änderungen sind vielfältig und umfassen insbesondere neue Kapitel, überarbeiteten Pseudocode, didaktische Verbesserungen und einen lebhafteren Schreibstil. So wurden etwa - neue Kapitel zu van-Emde-Boas-Bäume und mehrfädigen (engl.: multithreaded) Algorithmen aufgenommen, - das Kapitel zu Rekursionsgleichungen überarbeitet, sodass es nunmehr die Teile-und-Beherrsche-Methode besser abdeckt, - die Betrachtungen zu dynamischer Programmierung und Greedy-Algorithmen überarbeitet; Memoisation und der Begriff des Teilproblem-Graphen als eine Möglichkeit, die Laufzeit eines auf dynamischer Programmierung beruhender Algorithmus zu verstehen, werden eingeführt. - 100 neue Übungsaufgaben und 28 neue Problemstellungen ergänzt. Umfangreiches Dozentenmaterial (auf englisch) ist über die Website des US-Verlags verfügbar.

Statistical and Machine-Learning Data Mining:

Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition
Author: Bruce Ratner
Publisher: CRC Press
ISBN: 1351652389
Category: Computers
Page: 662
View: 2735

Continue Reading →

The third edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. is a compilation of new and creative data mining techniques, which address the scaling-up of the framework of classical and modern statistical methodology, for predictive modeling and analysis of big data. SM-DM provides proper solutions to common problems facing the newly minted data scientist in the data mining discipline. Its presentation focuses on the needs of the data scientists (commonly known as statisticians, data miners and data analysts), delivering practical yet powerful, simple yet insightful quantitative techniques, most of which use the "old" statistical methodologies improved upon by the new machine learning influence.

Wahrscheinlichkeitsrechnung und Statistik


Author: Robert Hafner
Publisher: Springer-Verlag
ISBN: 3709169445
Category: Mathematics
Page: 512
View: 3795

Continue Reading →

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition


Author: Sorin Drăghici
Publisher: CRC Press
ISBN: 1439809763
Category: Science
Page: 1036
View: 7718

Continue Reading →

Richly illustrated in color, Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition provides a clear and rigorous description of powerful analysis techniques and algorithms for mining and interpreting biological information. Omitting tedious details, heavy formalisms, and cryptic notations, the text takes a hands-on, example-based approach that teaches students the basics of R and microarray technology as well as how to choose and apply the proper data analysis tool to specific problems. New to the Second Edition Completely updated and double the size of its predecessor, this timely second edition replaces the commercial software with the open source R and Bioconductor environments. Fourteen new chapters cover such topics as the basic mechanisms of the cell, reliability and reproducibility issues in DNA microarrays, basic statistics and linear models in R, experiment design, multiple comparisons, quality control, data pre-processing and normalization, Gene Ontology analysis, pathway analysis, and machine learning techniques. Methods are illustrated with toy examples and real data and the R code for all routines is available on an accompanying CD-ROM. With all the necessary prerequisites included, this best-selling book guides students from very basic notions to advanced analysis techniques in R and Bioconductor. The first half of the text presents an overview of microarrays and the statistical elements that form the building blocks of any data analysis. The second half introduces the techniques most commonly used in the analysis of microarray data.

Handbook of Statistical Analysis and Data Mining Applications


Author: Robert Nisbet,John Elder,Gary Miner
Publisher: Academic Press
ISBN: 9780080912035
Category: Mathematics
Page: 864
View: 418

Continue Reading →

The Handbook of Statistical Analysis and Data Mining Applications is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers (both academic and industrial) through all stages of data analysis, model building and implementation. The Handbook helps one discern the technical and business problem, understand the strengths and weaknesses of modern data mining algorithms, and employ the right statistical methods for practical application. Use this book to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques, and discusses their application to real problems, in ways accessible and beneficial to practitioners across industries - from science and engineering, to medicine, academia and commerce. This handbook brings together, in a single resource, all the information a beginner will need to understand the tools and issues in data mining to build successful data mining solutions. Written "By Practitioners for Practitioners" Non-technical explanations build understanding without jargon and equations Tutorials in numerous fields of study provide step-by-step instruction on how to use supplied tools to build models Practical advice from successful real-world implementations Includes extensive case studies, examples, MS PowerPoint slides and datasets CD-DVD with valuable fully-working 90-day software included: "Complete Data Miner - QC-Miner - Text Miner" bound with book

Global Ecosystems Database, Version 1.0 (on CD-ROM)

EPA Global Climate Research Program, NOAA/NGDC Global Change Database Program : User's Guide
Author: John J. Kineman,National Geophysical Data Center
Publisher: N.A
ISBN: N.A
Category: Climatic changes
Page: 121
View: 9086

Continue Reading →

"The US Environmental Protection Agency (EPA), Environmental Research Laboratory - Corvallis, Oregon (ERL-C), established an Interagency Agreement with the US National Oceanic and Atmospheric Administration (NOAA), National Geophysical Data Center (NGDC) in September 1990. This agreement began a five year cooperative effort to develop a geographic database for modeling terrestrial climatebiosphere interactions in support of EPA's Global Climate Research Program. Although performing specific tasks under contract to the US EPA, NGDC independently operates a Global Change Database Program (GCDP) as part of its NOAA mission Considerable synergism therefore exists between the tasks performed for the JPA under the "Global Ecosystems Database Project,'' and other activities supporting NOAA Climate and Global Change Program"--Preface.

Statistical Methods for Trend Detection and Analysis in the Environmental Sciences


Author: Richard Chandler,Marian Scott
Publisher: John Wiley & Sons
ISBN: 111999196X
Category: Mathematics
Page: 388
View: 5883

Continue Reading →

The need to understand and quantify change is fundamental throughout the environmental sciences. This might involve describing past variation, understanding the mechanisms underlying observed changes, making projections of possible future change, or monitoring the effect of intervening in some environmental system. This book provides an overview of modern statistical techniques that may be relevant in problems of this nature. Practitioners studying environmental change will be familiar with many classical statistical procedures for the detection and estimation of trends. However, the ever increasing capacity to collect and process vast amounts of environmental information has led to growing awareness that such procedures are limited in the insights that they can deliver. At the same time, significant developments in statistical methodology have often been widely dispersed in the statistical literature and have therefore received limited exposure in the environmental science community. This book aims to provide a thorough but accessible review of these developments. It is split into two parts: the first provides an introduction to this area and the second part presents a collection of case studies illustrating the practical application of modern statistical approaches to the analysis of trends in real studies. Key Features: Presents a thorough introduction to the practical application and methodology of trend analysis in environmental science. Explores non-parametric estimation and testing as well as parametric techniques. Methods are illustrated using case studies from a variety of environmental application areas. Looks at trends in all aspects of a process including mean, percentiles and extremes. Supported by an accompanying website featuring datasets and R code. The book is designed to be accessible to readers with some basic statistical training, but also contains sufficient detail to serve as a reference for practising statisticians. It will therefore be of use to postgraduate students and researchers both in the environmental sciences and in statistics.

Einführung in Data Science

Grundprinzipien der Datenanalyse mit Python
Author: Joel Grus
Publisher: O'Reilly
ISBN: 3960100256
Category: Computers
Page: 352
View: 7374

Continue Reading →

Dieses Buch führt Sie in Data Science ein, indem es grundlegende Prinzipien der Datenanalyse erläutert und Ihnen geeignete Techniken und Werkzeuge vorstellt. Sie lernen nicht nur, wie Sie Bibliotheken, Frameworks, Module und Toolkits konkret einsetzen, sondern implementieren sie auch selbst. Dadurch entwickeln Sie ein tieferes Verständnis für die Zusammenhänge und erfahren, wie essenzielle Tools und Algorithmen der Datenanalyse im Kern funktionieren. Falls Sie Programmierkenntnisse und eine gewisse Sympathie für Mathematik mitbringen, unterstützt Joel Grus Sie dabei, mit den mathematischen und statistischen Grundlagen der Data Science vertraut zu werden und sich Programmierfähigkeiten anzueignen, die Sie für die Praxis benötigen. Dabei verwendet er Python: Die weitverbreitete Sprache ist leicht zu erlernen und bringt zahlreiche Bibliotheken für Data Science mit. Aus dem Inhalt: - Absolvieren Sie einen Crashkurs in Python - Lernen Sie die Grundlagen von linearer Algebra, Statistik und Wahrscheinlichkeitsrechnung kennen und erfahren Sie, wie diese in Data Science eingesetzt werden - Sammeln, untersuchen, bereinigen, bearbeiten und manipulieren Sie Daten - Tauchen Sie in die Welt des maschinellen Lernens ein - Implementieren Sie Modelle wie k-nearest Neighbors, Naive Bayes, lineare und logistische Regression, Entscheidungsbäume, neuronale Netzwerke und Clustering - Entdecken Sie Empfehlungssysteme, Sprachverarbeitung, Netzwerkanalyse, MapReduce und Datenbanken

Big Data

Die Revolution, die unser Leben verändern wird
Author: Viktor Mayer-Schönberger,Viktor; Cukier Mayer-Schönberger
Publisher: Redline Wirtschaft
ISBN: 3864144590
Category: Political Science
Page: 288
View: 5819

Continue Reading →

Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.

Mythos Mercedes

von der Funktion zum design
Author: Angelika Leu-Barthel,Deichtorhallen Hamburg
Publisher: N.A
ISBN: N.A
Category: Transportation
Page: 75
View: 5476

Continue Reading →

Doing Bayesian Data Analysis

A Tutorial with R, JAGS, and Stan
Author: John Kruschke
Publisher: Academic Press
ISBN: 0124059163
Category: Mathematics
Page: 776
View: 703

Continue Reading →

Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes’ rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. Accessible, including the basics of essential concepts of probability and random sampling Examples with R programming language and JAGS software Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) Coverage of experiment planning R and JAGS computer programming code on website Exercises have explicit purposes and guidelines for accomplishment Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs

Bildverstehen


Author: Axel Pinz
Publisher: Springer-Verlag
ISBN: 3709193583
Category: Computers
Page: 235
View: 9217

Continue Reading →

Bildverstehen, Bilder und die ihnen zugrundeliegenden Szenen mit den darin vorkommenden Objekten verstehen und beschreiben, das bedeutet aus der Sicht der Informatik: Sehen mit dem Computer - ‘Computer Vision’. Das Buch behandelt neben wichtigen Merkmalen des menschlichen visuellen Systems auch die nötigen Grundlagen aus digitaler Bildverarbeitung und aus künstlicher Intelligenz. Im Zentrum steht die schrittweise Entwicklung eines neuen Systemmodells für Bildverstehen, anhand dessen verschiedene "Abstraktionsebenen" des maschinellen Sehens, wie Segmentation, Gruppierung auf Aufbau einer Szenenbeschreibung besprochen werden. Das Buch bietet außerdem einen Überblick über gegenwärtige Trends in der Forschung sowie eine sehr aktuelle und ausführliche Bibliographie dieses Fachgebietes. Es liegt hiermit erstmalig eine abgeschlossene, systematische Darstellung dieses noch jungen und in dynamischer Entwicklung begriffenen Fachgebietes vor.

Programmieren mit R


Author: Uwe Ligges
Publisher: Springer-Verlag
ISBN: 3540799982
Category: Computers
Page: 251
View: 8075

Continue Reading →

R ist eine objektorientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik. Ausführlich führt der Autor in die Grundlagen ein und vermittelt eingängig die Struktur der Sprache. So ermöglicht er Lesern den leichten Einstieg: eigene Methoden umsetzen, Objektklassen definieren und Pakete aus Funktionen und zugehöriger Dokumentation zusammenstellen. Detailliert beschreibt er die enormen Grafikfähigkeiten von R. Für alle, die R als flexibles Werkzeug zur Datenanalyse und -visualisierung einsetzen. In 2. Auflage mit vielen Verbesserungen und Neuerungen von R-2.3.x und weiteren von Lesern gewünschten Ergänzungen.