Marketing Data Science

Modeling Techniques in Predictive Analytics with R and Python
Author: Thomas W. Miller
Publisher: FT Press
ISBN: 0133887340
Category: Business & Economics
Page: 225
View: 7125

Continue Reading →

Now , a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.

Modeling Techniques in Predictive Analytics with Python and R

A Guide to Data Science
Author: Thomas W. Miller
Publisher: FT Press
ISBN: 013389214X
Category: Computers
Page: 448
View: 7252

Continue Reading →

Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Modeling Techniques in Predictive Analytics

Business Problems and Solutions with R
Author: Thomas W. Miller
Publisher: Pearson Education
ISBN: 0133886018
Category: Business & Economics
Page: 359
View: 9692

Continue Reading →

Today, successful firms win by understanding their data more deeply than competitors do. In short, they compete based on analytics. Now, in Modeling Techniques in Predictive Analytics, the leader of Northwestern University's prestigious analytics program brings together all the concepts, techniques, and R code you need to excel in analytics. Thomas W. Miller's unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike.--

Sports Analytics and Data Science

Winning the Game with Methods and Models
Author: Thomas W. Miller
Publisher: FT Press
ISBN: 0133887413
Category: Computers
Page: 225
View: 1961

Continue Reading →

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. This up-to-the-minute reference will help you master all three facets of sports analytics — and use it to win! Sports Analytics and Data Science is the most accessible and practical guide to sports analytics for everyone who cares about winning and everyone who is interested in data science. You’ll discover how successful sports analytics blends business and sports savvy, modern information technology, and sophisticated modeling techniques. You’ll master the discipline through realistic sports vignettes and intuitive data visualizations–not complex math. Every chapter focuses on one key sports analytics application. Miller guides you through assessing players and teams, predicting scores and making game-day decisions, crafting brands and marketing messages, increasing revenue and profitability, and much more. Step by step, you’ll learn how analysts transform raw data and analytical models into wins: both on the field and in any sports business.

Web and Network Data Science

Modeling Techniques in Predictive Analytics
Author: Thomas W. Miller
Publisher: FT Press
ISBN: 0133887642
Category: Computers
Page: 384
View: 4783

Continue Reading →

Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.

R for Marketing Research and Analytics


Author: Chris Chapman,Elea McDonnell Feit
Publisher: Springer
ISBN: 3319144367
Category: Business & Economics
Page: 454
View: 2860

Continue Reading →

This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis. Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis. With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.

Sports Performance Measurement and Analytics

The Science of Assessing Performance, Predicting Future Outcomes, Interpreting Statistical Models, and Evaluating the Market Value of Athletes
Author: Lorena Martin
Publisher: FT Press
ISBN: 0134193881
Category: Computers
Page: 320
View: 3423

Continue Reading →

A PRACTICAL, REAL-WORLD GUIDE TO ANALYTICS FOR THE 5 MAJOR SPORTS: FOOTBALL, BASKETBALL, BASEBALL, SOCCER, AND TENNIS GAIN A COMPETITIVE EDGE! This is the first real-world guide to building and using analytical models for measuring and assessing performance in the five major sports: football, basketball, baseball, soccer, and tennis. Unlike books that focus strictly on theory, this book brings together sports measurement and statistical analyses, demonstrating how to examine differences across sports as well as between player positions. This book will provide you with the tools for cutting-edge approaches you can extend to the sport of your choice. Expert Northwestern University data scientist, UC San Diego researcher, and competitive athlete, Lorena Martin shows how to use measures and apply statistical models to evaluate players, reduce injuries, and improve sports performance. You’ll learn how to leverage a deep understanding of each sport’s principles, rules, attributes, measures, and performance outcomes. Sports Performance Measurement and Analytics will be an indispensable resource for anyone who wants to bring analytical rigor to athletic competition: students, professors, analysts, fans, physiologists, coaches, managers, and sports executives alike. All data sets, extensive code, and additional examples are available for download at http://www.ftpress.com/martin/ What are the qualities a person must have to become a world-class athlete? This question and many more can be answered through research, measurement, statistics, and analytics. This book gives athletes, trainers, coaches, and managers a better understanding of measurement and analytics as they relate to sports performance. To develop accurate measures, we need to know what we want to measure and why. There is great power in accurate measures and statistics. Research findings can show us how to prevent injuries, evaluate strengths and weaknesses, improve team cohesion, and optimize sports performance. This book serves many readers. People involved with sports will gain an appreciation for performance measures and analytics. People involved with analytics will gain new insights into quantified values representing physical, physiological, and psychological components of sports performance. And students eager to learn about sports analytics will have a practical introduction to the field. This is a thorough introduction to performance measurement and analytics for five of the world’s leading sports. The only book of its kind, it offers a complete overview of the most important concepts, rules, measurements, and statistics for each sport, while demonstrating applications of real-world analytics. You’ll find practical, state-of-the-art guidance on predicting future outcomes, evaluating an athlete’s market value, and more.

Statistics for Marketing and Consumer Research


Author: Mario Mazzocchi
Publisher: SAGE
ISBN: 1446204014
Category: Business & Economics
Page: 432
View: 6926

Continue Reading →

Balancing simplicity with technical rigour, this practical guide to the statistical techniques essential to research in marketing and related fields, describes each method as well as showing how they are applied. The book is accompanied by two real data sets to replicate examples and with exercises to solve, as well as detailed guidance on the use of appropriate software including: - 750 powerpoint slides with lecture notes and step-by-step guides to run analyses in SPSS (also includes screenshots) - 136 multiple choice questions for tests This is augmented by in-depth discussion of topics including: - Sampling - Data management and statistical packages - Hypothesis testing - Cluster analysis - Structural equation modelling

Marketing Analytics

Data-Driven Techniques with Microsoft Excel
Author: Wayne L. Winston
Publisher: John Wiley & Sons
ISBN: 1118417305
Category: Computers
Page: 720
View: 3783

Continue Reading →

Helping tech-savvy marketers and data analysts solve real-world business problems with Excel Using data-driven business analytics to understand customers and improve results is a great idea in theory, but in today's busy offices, marketers and analysts need simple, low-cost ways to process and make the most of all that data. This expert book offers the perfect solution. Written by data analysis expert Wayne L. Winston, this practical resource shows you how to tap a simple and cost-effective tool, Microsoft Excel, to solve specific business problems using powerful analytic techniques—and achieve optimum results. Practical exercises in each chapter help you apply and reinforce techniques as you learn. Shows you how to perform sophisticated business analyses using the cost-effective and widely available Microsoft Excel instead of expensive, proprietary analytical tools Reveals how to target and retain profitable customers and avoid high-risk customers Helps you forecast sales and improve response rates for marketing campaigns Explores how to optimize price points for products and services, optimize store layouts, and improve online advertising Covers social media, viral marketing, and how to exploit both effectively Improve your marketing results with Microsoft Excel and the invaluable techniques and ideas in Marketing Analytics: Data-Driven Techniques with Microsoft Excel.

Cutting-edge Marketing Analytics

Real World Cases and Data Sets for Hands on Learning
Author: Rajkumar Venkatesan,Paul Farris,Ronald T. Wilcox
Publisher: Pearson Education
ISBN: 0133552527
Category: Business & Economics
Page: 300
View: 3630

Continue Reading →

Master practical strategic marketing analysis through real-life case studies and hands-on examples. In Cutting Edge Marketing Analytics, three pioneering experts integrate all three core areas of marketing analytics: statistical analysis, experiments, and managerial intuition. They fully detail a best-practice marketing analytics methodology, augmenting it with case studies that illustrate the quantitative and data analysis tools you'll need to allocate resources, define optimal marketing mixes; perform effective analysis of customers and digital marketing campaigns, and create high-value dashboards and metrics. For each marketing problem, the authors help you: Identify the right data and analytics techniques Conduct the analysis and obtain insights from it Outline what-if scenarios and define optimal solutions Connect your insights to strategic decision-making Each chapter contains technical notes, statistical knowledge, case studies, and real data you can use to perform the analysis yourself. As you proceed, you'll gain an in-depth understanding of: The real value of marketing analytics How to integrate quantitative analysis with managerial sensibility How to apply linear regression, logistic regression, cluster analysis, and Anova models The crucial role of careful experimental design For all marketing professionals specializing in marketing analytics and/or business intelligence; and for students and faculty in all graduate-level business courses covering Marketing Analytics, Marketing Effectiveness, or Marketing Metrics

Statistical Modeling and Analysis for Database Marketing

Effective Techniques for Mining Big Data
Author: Bruce Ratner
Publisher: CRC Press
ISBN: 9780203496909
Category: Business & Economics
Page: 384
View: 6315

Continue Reading →

Traditional statistical methods are limited in their ability to meet the modern challenge of mining large amounts of data. Data miners, analysts, and statisticians are searching for innovative new data mining techniques with greater predictive power, an attribute critical for reliable models and analyses. Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data delivers a collection of successful database marketing methodologies for big data. This compendium solves common database marketing problems by applying new hybrid modeling techniques that combine traditional statistical and new machine learning methods. The book delivers a thorough analysis of these cutting-edge techniques, which include non-statistical machine learning and genetic intelligent hybrid models. By following the step-by-step procedures detailed in the text, database marketing professionals can learn how to apply the proper statistical techniques to any database marketing challenge. The practical case studies and examples provided involve real problems and real data, and are taken from a variety of industries, including banking, insurance, finance, retail, and telecommunications.

Big Data Driven Supply Chain Management

A Framework for Implementing Analytics and Turning Information Into Intelligence
Author: Nada R. Sanders
Publisher: Pearson Education
ISBN: 0133762823
Category: Business & Economics
Page: 272
View: 4180

Continue Reading →

Master a complete, five-step roadmap for leveraging Big Data and analytics to gain unprecedented competitive advantage from your supply chain. Using Big Data, pioneers such as Amazon, UPS, and Wal-Mart are gaining unprecedented mastery over their supply chains. They are achieving greater visibility into inventory levels, order fulfillment rates, material and product delivery… using predictive data analytics to match supply with demand; leveraging new planning strengths to optimize their sales channel strategies; optimizing supply chain strategy and competitive priorities; even launching powerful new ventures. Despite these opportunities, many supply chain operations are gaining limited or no value from Big Data. In Big Data Driven Supply Chain Management, Nada Sanders presents a systematic five-step framework for using Big Data in supply chains. You'll learn best practices for segmenting and analyzing customers, defining competitive priorities for each segment, aligning functions behind strategy, dissolving organizational boundaries to sense demand and make better decisions, and choose the right metrics to support all of this. Using these techniques, you can overcome the widespread obstacles to making the most of Big Data in your supply chain — and earn big profits from the data you're already generating. For all executives, managers, and analysts interested in using Big Data technologies to improve supply chain performance.

Data Visualization and Text Principles and Practices

The Eye of Data Science
Author: Thomas Miller
Publisher: Pearson FT Press
ISBN: 9780134308913
Category: Business & Economics
Page: 352
View: 7411

Continue Reading →

Data visualization is increasingly central to predictive analytics and data science. The book focuses on all three application areas of data visualization: exploratory data analysis, model diagnostics, and presentation graphics. Built on the same structure and approach as other books in Thomas W. Miller's popular Modeling Techniques series, it has been carefully designed to serve multiple audiences: business managers, analysts, programmers, and students. Miller begins with core principles, revealing why some data visualizations effectively present information and others don't. He reviews the science of human perception and cognition, proven principles of graphic design, and the growing role of visualization throughout data science -- including examples such as the visualization of time, networks, and maps. Drawing on his pioneering experience teaching data visualization, Miller begins each chapter by stating a real business problem. He explains why the problem is important, describes a relevant dataset, and guides you through solving it with leading open-source tools such as R, Python, D3, and Gephi. (All R and Python code is set apart, so managers or analysts who aren't interested in programming can easily skip it.) Like other books in this series, Data Visualization Principles and Practices draws realistic examples from key application areas, including marketing, finance, sports analytics, web and network data science, text analytics, and social network analysis. Examples include cross-sectional data, time series, network, and spatial data. Readers will discover advanced methods for constructing static and interactive graphics, building web-browser-based presentations, and even creating "information art.""

Modern Analytics Methodologies

Driving Business Value with Analytics
Author: Michele Chambers,Thomas W Dinsmore
Publisher: Pearson Education
ISBN: 0133498832
Category: Computers
Page: 272
View: 7184

Continue Reading →

Create a complete roadmap for capitalizing on analytics to grow topline revenue and build shareholder value in your unique organization! Modern Analytics Methodologies goes far beyond the classic Analytics Maturity Model to help you overcome the gaps between your current analytics capabilities and where you need to go. Pioneering analytics experts Michele Chambers and Thomas Dinsmore help you implement analytics that supports your strategy, aligns with your culture, and serves your customers and stakeholders. Drawing on work with dozens of leading enterprises, Michele Chambers and Thomas Dinsmore describe high-value applications from many industries, and help you systematically identify and deliver on your company's best opportunities. Writing for both professionals and students, they show how to: Leverage the convergence of macro trends ranging from "flattening" and "green" to Big Data and machine learning Go beyond the Analytics Maturity Model: power your unique business strategy with an equally focused analytics strategy Link key business objectives with core characteristics of your organization, value chain, and stakeholders Take advantage of game changing opportunities before competitors do Effectively integrate the managerial and operational aspects of analytics Measure performance with dashboards, scorecards, visualization, simulation, and more Prioritize and score prospective analytics projects Identify "Quick Wins" you can implement while you're planning for the long-term Build an effective Analytic Program Office to make your roadmap persistent Update and revise your roadmap for new needs and technologies Modern Analytics Methodologies will be an indispensable resource for any executive or professional concerned with analytics, including Chief Analytics Officers; Chief Data Officers; Chief Scientists; Chief Marketing Officers; Chief Risk Officers; Chief Strategy Officers; VPs of Analytics or Big Data; data scientists; business strategists; and line-of-business executives.

Digital Marketing Analytics

Making Sense of Consumer Data in a Digital World
Author: Chuck Hemann,Ken Burbary
Publisher: Que Publishing
ISBN: 0133150925
Category: Business & Economics
Page: 384
View: 5364

Continue Reading →

Distill 100%–Usable Max-Profit Knowledge from Your Digital Data. Do It Now! Why hasn’t all that data delivered a whopping competitive advantage? Because you’ve barely begun to use it, that’s why! Good news: neither have your competitors. It’s hard! But digital marketing analytics is 100% doable, it offers colossal opportunities, and all of the data is accessible to you. Chuck Hemann and Ken Burbary will help you chop the problem down to size, solve every piece of the puzzle, and integrate a virtually frictionless system for moving from data to decision, action to results! Scope it out, pick your tools, learn to listen, get the metrics right, and then distill your digital data for maximum value for everything from R&D to CRM to social media marketing! • Prioritize—because you can’t measure, listen to, and analyze everything • Use analysis to craft experiences that profoundly reflect each customer’s needs, expectations, and behaviors • Measure real social media ROI: sales, leads, and customer satisfaction • Track the performance of all paid, earned, and owned social media channels • Leverage “listening data” way beyond PR and marketing: for strategic planning, product development, and HR • Start optimizing web and social content in real time • Implement advanced tools, processes, and algorithms for accurately measuring influence • Integrate paid and social data to drive more value from both • Make the most of surveys, focus groups, and offline research synergies • Focus new marketing and social media investments where they’ll deliver the most value Foreword by Scott Monty Global Head of Social Media, Ford Motor Company

Python for Data Analysis

Data Wrangling with Pandas, NumPy, and IPython
Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
ISBN: 1491957611
Category: Computers
Page: 544
View: 6104

Continue Reading →

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Advanced Customer Analytics

Targeting, Valuing, Segmenting and Loyalty Techniques
Author: Mike Grigsby
Publisher: Kogan Page Publishers
ISBN: 0749477164
Category: Business & Economics
Page: 264
View: 5154

Continue Reading →

Advanced Customer Analytics provides a clear guide to the specific analytical challenges faced by the retail sector. The book covers the nature and scale of data obtained in transactions, relative proximity to the consumer and the need to monitor customer behaviour across multiple channels. The book advocates a category management approach, taking into account the need to understand the consumer mindset through elasticity modelling and discount strategies, as well as targeted marketing and loyalty design. A practical, no-nonsense approach to complex scenarios is taken throughout, breaking down tasks into easily digestible steps. The use of a fictional retail analyst 'Scott' helps to provide accessible examples of practice. Advanced Customer Analytics does not skirt around the complexities of this subject but offers conceptual support to steer retail marketers towards making the right choices for analysing their data.

Data Analytics and Decision Support for Cybersecurity

Trends, Methodologies and Applications
Author: Iván Palomares Carrascosa,Harsha Kumara Kalutarage,Yan Huang
Publisher: Springer
ISBN: 3319594397
Category: Computers
Page: 270
View: 9840

Continue Reading →

The book illustrates the inter-relationship between several data management, analytics and decision support techniques and methods commonly adopted in Cybersecurity-oriented frameworks. The recent advent of Big Data paradigms and the use of data science methods, has resulted in a higher demand for effective data-driven models that support decision-making at a strategic level. This motivates the need for defining novel data analytics and decision support approaches in a myriad of real-life scenarios and problems, with Cybersecurity-related domains being no exception. This contributed volume comprises nine chapters, written by leading international researchers, covering a compilation of recent advances in Cybersecurity-related applications of data analytics and decision support approaches. In addition to theoretical studies and overviews of existing relevant literature, this book comprises a selection of application-oriented research contributions. The investigations undertaken across these chapters focus on diverse and critical Cybersecurity problems, such as Intrusion Detection, Insider Threats, Insider Threats, Collusion Detection, Run-Time Malware Detection, Intrusion Detection, E-Learning, Online Examinations, Cybersecurity noisy data removal, Secure Smart Power Systems, Security Visualization and Monitoring. Researchers and professionals alike will find the chapters an essential read for further research on the topic.

Introduction to Algorithmic Marketing

Artificial Intelligence for Marketing Operations
Author: Ilya Katsov
Publisher: N.A
ISBN: 9780692989043
Category: Computers
Page: 506
View: 8208

Continue Reading →

A comprehensive guide to advanced marketing automation for marketing strategists, data scientists, product managers, and software engineers. The book covers the main areas of marketing that require programmatic micro-decisioning - targeted promotions and advertisements, eCommerce search, recommendations, pricing, and assortment optimization.

Getting Started with Data Science

Making Sense of Data with Analytics
Author: Murtaza Haider
Publisher: IBM Press
ISBN: 0133991237
Category: Business & Economics
Page: 400
View: 5210

Continue Reading →

Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon.