Making Sense of Data I

A Practical Guide to Exploratory Data Analysis and Data Mining
Author: Glenn J. Myatt,Wayne P. Johnson
Publisher: John Wiley & Sons
ISBN: 1118422104
Category: Mathematics
Page: 248
View: 3613

Continue Reading →

Praise for the First Edition “...a well-written book on data analysis anddata mining that provides an excellent foundation...” —CHOICE “This is a must-read book for learning practicalstatistics and data analysis...” —Computing A proven go-to guide for data analysis, Making Sense of DataI: A Practical Guide to Exploratory Data Analysis and Data Mining,Second Edition focuses on basic data analysis approaches thatare necessary to make timely and accurate decisions in a diverserange of projects. Based on the authors’ practical experiencein implementing data analysis and data mining, the new editionprovides clear explanations that guide readers from almost everyfield of study. In order to facilitate the needed steps when handling a dataanalysis or data mining project, a step-by-step approach aidsprofessionals in carefully analyzing data and implementing results,leading to the development of smarter business decisions. The toolsto summarize and interpret data in order to master data analysisare integrated throughout, and the Second Edition alsofeatures: Updated exercises for both manual and computer-aidedimplementation with accompanying worked examples New appendices with coverage on the freely availableTraceis™ software, including tutorials using data from avariety of disciplines such as the social sciences, engineering,and finance New topical coverage on multiple linear regression and logisticregression to provide a range of widely used and transparentapproaches Additional real-world examples of data preparation to establisha practical background for making decisions from data Making Sense of Data I: A Practical Guide to Exploratory DataAnalysis and Data Mining, Second Edition is an excellentreference for researchers and professionals who need to achieveeffective decision making from data. The Second Edition isalso an ideal textbook for undergraduate and graduate-level coursesin data analysis and data mining and is appropriate forcross-disciplinary courses found within computer science andengineering departments.

Making Sense of Data

A Practical Guide to Exploratory Data Analysis and Data Mining
Author: Glenn J. Myatt
Publisher: John Wiley & Sons
ISBN: 0470101016
Category: Mathematics
Page: 288
View: 1899

Continue Reading →

Making Sense of Data II

A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications
Author: Glenn J. Myatt,Wayne P. Johnson
Publisher: John Wiley & Sons
ISBN: 9780470417393
Category: Mathematics
Page: 308
View: 2908

Continue Reading →

A hands-on guide to making valuable decisions from data using advanced data mining methods and techniques This second installment in the Making Sense of Data series continues to explore a diverse range of commonly used approaches to making and communicating decisions from data. Delving into more technical topics, this book equips readers with advanced data mining methods that are needed to successfully translate raw data into smart decisions across various fields of research including business, engineering, finance, and the social sciences. Following a comprehensive introduction that details how to define a problem, perform an analysis, and deploy the results, Making Sense of Data II addresses the following key techniques for advanced data analysis: Data Visualization reviews principles and methods for understanding and communicating data through the use of visualization including single variables, the relationship between two or more variables, groupings in data, and dynamic approaches to interacting with data through graphical user interfaces. Clustering outlines common approaches to clustering data sets and provides detailed explanations of methods for determining the distance between observations and procedures for clustering observations. Agglomerative hierarchical clustering, partitioned-based clustering, and fuzzy clustering are also discussed. Predictive Analytics presents a discussion on how to build and assess models, along with a series of predictive analytics that can be used in a variety of situations including principal component analysis, multiple linear regression, discriminate analysis, logistic regression, and Naïve Bayes. Applications demonstrates the current uses of data mining across a wide range of industries and features case studies that illustrate the related applications in real-world scenarios. Each method is discussed within the context of a data mining process including defining the problem and deploying the results, and readers are provided with guidance on when and how each method should be used. The related Web site for the series ( provides a hands-on data analysis and data mining experience. Readers wishing to gain more practical experience will benefit from the tutorial section of the book in conjunction with the TraceisTM software, which is freely available online. With its comprehensive collection of advanced data mining methods coupled with tutorials for applications in a range of fields, Making Sense of Data II is an indispensable book for courses on data analysis and data mining at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals who are interested in learning how to accomplish effective decision making from data and understanding if data analysis and data mining methods could help their organization.

Making Sense of Data III

A Practical Guide to Designing Interactive Data Visualizations
Author: Glenn J. Myatt,Wayne P. Johnson
Publisher: John Wiley & Sons
ISBN: 1118121589
Category: Mathematics
Page: 416
View: 6333

Continue Reading →

Focuses on insights, approaches, and techniques that areessential to designing interactive graphics and visualizations Making Sense of Data III: A Practical Guide to DesigningInteractive Data Visualizations explores a diverse range ofdisciplines to explain how meaning from graphical representationsis extracted. Additionally, the book describes the best approachfor designing and implementing interactive graphics andvisualizations that play a central role in data exploration anddecision-support systems. Beginning with an introduction to visual perception, MakingSense of Data III features a brief history on the use ofvisualization in data exploration and an outline of the designprocess. Subsequent chapters explore the following key areas: Cognitive and Visual Systems describes how various drawings,maps, and diagrams known as external representations are understoodand used to extend the mind's capabilities Graphics Representations introduces semiotic theory anddiscusses the seminal work of cartographer Jacques Bertin and thegrammar of graphics as developed by Leland Wilkinson Designing Visual Interactions discusses the four stages ofdesign process—analysis, design, prototyping, andevaluation—and covers the important principles and strategiesfor designing visual interfaces, information visualizations, anddata graphics Hands-on: Creative Interactive Visualizations with Protovisprovides an in-depth explanation of the capabilities of theProtovis toolkit and leads readers through the creation of a seriesof visualizations and graphics The final chapter includes step-by-step examples that illustratethe implementation of the discussed methods, and a series ofexercises are provided to assist in learning the Protovis language.A related website features the source code for the presentedsoftware as well as examples and solutions for selectexercises. Featuring research in psychology, vision science, statistics,and interaction design, Making Sense of Data III is anindispensable book for courses on data analysis and data mining atthe upper-undergraduate and graduate levels. The book also servesas a valuable reference for computational statisticians, softwareengineers, researchers, and professionals of any discipline whowould like to understand how the mind processes graphicalrepresentations.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython
Author: Wes McKinney
Publisher: O'Reilly
ISBN: 3960102143
Category: Computers
Page: 542
View: 4952

Continue Reading →

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen
Author: Ian H. Witten,Eibe Frank
Publisher: N.A
ISBN: 9783446215337
Page: 386
View: 7960

Continue Reading →

Selecting the Right Analyses for Your Data

Quantitative, Qualitative, and Mixed Methods
Author: W. Paul Vogt,Dianne C. Gardner,Lynne M. Haeffele,Elaine R. Vogt
Publisher: Guilford Publications
ISBN: 1462516025
Category: Social Science
Page: 500
View: 1374

Continue Reading →

"What are the most effective methods to code and analyze data for a particular study? This thoughtful and engaging book reviews the selection criteria for coding and analyzing any set of data--whether qualitative, quantitative, mixed, or visual. The authors systematically explain when to use verbal, numerical, graphic, or combined codes, and when to use qualitative, quantitative, graphic, or mixed-methods modes of analysis. Chapters on each topic are organized so that researchers can read them sequentially or can easily "flip and find" answers to specific questions. Nontechnical discussions of cutting-edge approaches--illustrated with real-world examples--emphasize how to choose (rather than how to implement) the various analyses. The book shows how using the right analysis methods leads to more justifiable conclusions and more persuasive presentations of research results. Useful features for teaching or self-study: *Chapter-opening preview boxes that highlight useful topics addressed. *End-of-chapter summary tables recapping the 'dos and don'ts' and advantages and disadvantages of each analytic technique. *Annotated suggestions for further reading and technical resources on each topic. Subject Areas/Keywords: analyses, coding, combined methods, data analysis, data collection, dissertation, graphical, interpretation, mixed methods, qualitative, quantitative, research analysis, research designs, research methods, social sciences, thesis, visual Audience: Researchers, instructors, and graduate students in a range of disciplines, including psychology, education, social work, sociology, health, and management; administrators and managers who need to make data-driven decisions"--

Mathematical Foundations of Computer Networking

Author: Srinivasan Keshav
Publisher: Addison-Wesley
ISBN: 0132826135
Category: Computers
Page: 491
View: 7930

Continue Reading →

“To design future networks that are worthy of society’s trust, we must put the ‘discipline’ of computer networking on a much stronger foundation. This book rises above the considerable minutiae of today’s networking technologies to emphasize the long-standing mathematical underpinnings of the field.” –Professor Jennifer Rexford, Department of Computer Science, Princeton University “This book is exactly the one I have been waiting for the last couple of years. Recently, I decided most students were already very familiar with the way the net works but were not being taught the fundamentals–the math. This book contains the knowledge for people who will create and understand future communications systems." –Professor Jon Crowcroft, The Computer Laboratory, University of Cambridge The Essential Mathematical Principles Required to Design, Implement, or Evaluate Advanced Computer Networks Students, researchers, and professionals in computer networking require a firm conceptual understanding of its foundations. Mathematical Foundations of Computer Networking provides an intuitive yet rigorous introduction to these essential mathematical principles and techniques. Assuming a basic grasp of calculus, this book offers sufficient detail to serve as the only reference many readers will need. Each concept is described in four ways: intuitively; using appropriate mathematical notation; with a numerical example carefully chosen for its relevance to networking; and with a numerical exercise for the reader. The first part of the text presents basic concepts, and the second part introduces four theories in a progression that has been designed to gradually deepen readers’ understanding. Within each part, chapters are as self-contained as possible. The first part covers probability; statistics; linear algebra; optimization; and signals, systems, and transforms. Topics range from Bayesian networks to hypothesis testing, and eigenvalue computation to Fourier transforms. These preliminary chapters establish a basis for the four theories covered in the second part of the book: queueing theory, game theory, control theory, and information theory. The second part also demonstrates how mathematical concepts can be applied to issues such as contention for limited resources, and the optimization of network responsiveness, stability, and throughput.

Statistik-Workshop für Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Category: Computers
Page: 160
View: 5291

Continue Reading →

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn
Author: Jake VanderPlas
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3958456979
Category: Computers
Page: 552
View: 419

Continue Reading →

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

Exploratory Data Analysis: An Introduction to Data Analysis Using SAS

Author: Patricia Cerrito
ISBN: 1435705424
Category: Science
Page: 272
View: 8378

Continue Reading →

This is an introductory text on how to investigate datasets. It is intended to be a practical text for those who need to research large datasets. Therefore, it does not follow the standard contents for more typical introductory statistics textbooks. When you complete the material, you will be able to work with your data using data visualization and regression in order to make sense of it, and to use your findings to make decisions. The book makes use of the statistical software, SAS, and its menu system SAS Enterprise Guide. This can be used as a stand alone text, or as a supplementary text to a more standard course. There are some datasets to accompany this text. ID# 1640751, Data for Exploratory Data Analysis.

Big Data

Die Revolution, die unser Leben verändern wird
Author: Viktor Mayer-Schönberger,Viktor; Cukier Mayer-Schönberger
Publisher: Redline Wirtschaft
ISBN: 3864144590
Category: Political Science
Page: 288
View: 7633

Continue Reading →

Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.

Data Science für Dummies

Author: Lillian Pierson
Publisher: John Wiley & Sons
ISBN: 352780675X
Category: Mathematics
Page: 382
View: 3545

Continue Reading →

Daten, Daten, Daten? Sie haben schon Kenntnisse in Excel und Statistik, wissen aber noch nicht, wie all die Datensätze helfen sollen, bessere Entscheidungen zu treffen? Von Lillian Pierson bekommen Sie das dafür notwendige Handwerkszeug: Bauen Sie Ihre Kenntnisse in Statistik, Programmierung und Visualisierung aus. Nutzen Sie Python, R, SQL, Excel und KNIME. Zahlreiche Beispiele veranschaulichen die vorgestellten Methoden und Techniken. So können Sie die Erkenntnisse dieses Buches auf Ihre Daten übertragen und aus deren Analyse unmittelbare Schlüsse und Konsequenzen ziehen.

Graphische Semiologie

Diagramme, Netze, Karten
Author: Jacques Bertin
Publisher: Walter de Gruyter
ISBN: 9783111749792
Category: Cartography
Page: 430
View: 6311

Continue Reading →

Graphische Semiologie: Diagramme, Netze, Karten.

Visualize This!

Author: Nathan Yau
Publisher: John Wiley & Sons
ISBN: 3527760229
Category: Statistics / Graphic methods / Data processing
Page: 422
View: 9087

Continue Reading →

A guide on how to visualise and tell stories with data, providing practical design tips complemented with step-by-step tutorials.

7th International Conference on Practical Applications of Computational Biology & Bioinformatics

Author: Mohd Saberi Mohamad,Loris Nanni,Miguel P. Rocha,Florentino Fdez-Riverola
Publisher: Springer Science & Business Media
ISBN: 3319005782
Category: Computers
Page: 153
View: 8416

Continue Reading →

The growth in the Bioinformatics and Computational Biology fields over the last few years has been remarkable and the trend is to increase its pace. In fact, the need for computational techniques that can efficiently handle the huge amounts of data produced by the new experimental techniques in Biology is still increasing driven by new advances in Next Generation Sequencing, several types of the so called omics data and image acquisition, just to name a few. The analysis of the datasets that produces and its integration call for new algorithms and approaches from fields such as Databases, Statistics, Data Mining, Machine Learning, Optimization, Computer Science and Artificial Intelligence. Within this scenario of increasing data availability, Systems Biology has also been emerging as an alternative to the reductionist view that dominated biological research in the last decades. Indeed, Biology is more and more a science of information requiring tools from the computational sciences. In the last few years, we have seen the surge of a new generation of interdisciplinary scientists that have a strong background in the biological and computational sciences. In this context, the interaction of researchers from different scientific fields is, more than ever, of foremost importance boosting the research efforts in the field and contributing to the education of a new generation of Bioinformatics scientists. PACBB‘13 hopes to contribute to this effort promoting this fruitful interaction. PACBB'13 technical program included 19 papers from a submission pool of 32 papers spanning many different sub-fields in Bioinformatics and Computational Biology. Therefore, the conference will certainly have promoted the interaction of scientists from diverse research groups and with a distinct background (computer scientists, mathematicians, biologists). The scientific content will certainly be challenging and will promote the improvement of the work that is being developed by each of the participants.

Grounded theory

Grundlagen qualitativer Sozialforschung
Author: Anselm L. Strauss,Juliet M. Corbin
Publisher: N.A
ISBN: 9783621272650
Category: Grounded theory
Page: 227
View: 6643

Continue Reading →

Studierende und Forscher verschiedener Disziplinen, die am Entwickeln einer Theorie interessiert sind, stellen sich nach der Datenerhebung oft die Frage: Wie komme ich zu einer Theorie, die sich auf die empirische Realität gründet? Die Autoren beantworten diese und andere Fragen, die sich bei der qualitativen Interpretation von Daten ergeben. Auf klare und einfache Art geschrieben vermittelt das Buch Schritt für Schritt die grundlegenden Kenntnisse und Verfahrensweisen der "grounded theory" (datenbasierte Theorie), so daß es besonders für Personen interessant ist, die sich zum ersten Mal mit der Theorienbildung anhand qualitativer Datenanalyse beschäftigen. Das Buch gliedert sich in drei Teile. Teil I bietet einen Überblick über die Denkweise, die der "grounded theory" zugrunde liegt. Teil II stellt die speziellen Techniken und Verfahrensweisen genau dar, wie z.B. verschiedene Kodierungsarten. In Teil III werden zusätzliche Verfahrensweisen erklärt und Evaluationskriterien genannt.

R in a Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 3897216507
Category: Computers
Page: 768
View: 5093

Continue Reading →

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Programmieren mit R

Author: Uwe Ligges
Publisher: Springer-Verlag
ISBN: 3540267328
Category: Mathematics
Page: 237
View: 5625

Continue Reading →

R ist eine objekt-orientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik - frei erhältlich unter der GPL. Ziel dieses Buches ist es, nicht nur ausführlich in die Grundlagen der Sprache R einzuführen, sondern auch ein Verständnis der Struktur der Sprache zu vermitteln. Leicht können so eigene Methoden umgesetzt, Objektklassen definiert und ganze Pakete aus Funktionen und zugehöriger Dokumentation zusammengestellt werden. Die enormen Grafikfähigkeiten von R werden detailliert beschrieben. Das Buch richtet sich an alle, die R als flexibles Werkzeug zur Datenenalyse und -visualisierung einsetzen möchten: Studierende, die Daten in Projekten oder für ihre Diplomarbeit analysieren möchten, Forschende, die neue Methoden ausprobieren möchten, und diejenigen, die in der Wirtschaft täglich Daten aufbereiten, analysieren und anderen in komprimierter Form präsentieren.