*From Euclidean Surfaces to Hyperbolic Knots*

**Author**: Francis Bonahon

**Publisher:**American Mathematical Soc.

**ISBN:**082184816X

**Category:**Mathematics

**Page:**384

**View:**2516

Skip to content
# Search Results for: low-dimensional-geometry-from-euclidean-surfaces-to-hyperbolic-knots-student-mathematical-library

*From Euclidean Surfaces to Hyperbolic Knots*

**Author**: Francis Bonahon

**Publisher:** American Mathematical Soc.

**ISBN:** 082184816X

**Category:** Mathematics

**Page:** 384

**View:** 2516

The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.

**Author**: William Goldman,Caroline Series,Ser Peow Tan

**Publisher:** World Scientific

**ISBN:** 9814401358

**Category:** Mathematics

**Page:** 349

**View:** 2147

This book aims to describe, for readers uneducated in science, the development of humanity's desire to know and understand the world around us through the various stages of its development to the present, when science is almost universally recognized - at least in the Western world - as the most reliable way of knowing. The book describes the history of the large-scale exploration of the surface of the earth by sea, beginning with the Vikings and the Chinese, and of the unknown interiors of the American and African continents by foot and horseback. After the invention of the telescope, visual exploration of the surfaces of the Moon and Mars were made possible, and finally a visit to the Moon. The book then turns to our legacy from the ancient Greeks of wanting to understand rather than just know, and why the scientific way of understanding is valued. For concreteness, it relates the lives and accomplishments of six great scientists, four from the nineteenth century and two from the twentieth. Finally, the book explains how chemistry came to be seen as the most basic of the sciences, and then how physics became the most fundamental.

**Author**: Michael Kapovich

**Publisher:** Springer Science & Business Media

**ISBN:** 9780817649135

**Category:** Mathematics

**Page:** 470

**View:** 8829

Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.

**Author**: Paul Zorn

**Publisher:** The Mathematical Association of America

**ISBN:** 0883855887

**Category:** Mathematics

**Page:** 420

**View:** 5963

The MAA was founded in 1915 to serve as a home for The American Mathematical Monthly. The mission of the Association-to advance mathematics, especially at the collegiate level-has, however, always been larger than merely publishing world-class mathematical exposition. MAA members have explored more than just mathematics; we have, as this volume tries to make evident, investigated mathematical connections to pedagogy, history, the arts, technology, literature, every field of intellectual endeavor. Essays, all commissioned for this volume, include exposition by Bob Devaney, Robin Wilson, and Frank Morgan; history from Karen Parshall, Della Dumbaugh, and Bill Dunham; pedagogical discussion from Paul Zorn, Joe Gallian, and Michael Starbird, and cultural commentary from Bonnie Gold, Jon Borwein, and Steve Abbott. This volume contains 35 essays by all-star writers and expositors writing to celebrate an extraordinary century for mathematics-more mathematics has been created and published since 1915 than in all of previous recorded history. We've solved age-old mysteries, created entire new fields of study, and changed our conception of what mathematics is. Many of those stories are told in this volume as the contributors paint a portrait of the broad cultural sweep of mathematics during the MAA's first century. Mathematics is the most thrilling, the most human, area of intellectual inquiry; you will find in this volume compelling proof of that claim.

**Author**: John Ratcliffe

**Publisher:** Springer Science & Business Media

**ISBN:** 1475740131

**Category:** Mathematics

**Page:** 750

**View:** 9115

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

**Author**: Saul Stahl

**Publisher:** Courier Corporation

**ISBN:** 0486134989

**Category:** Mathematics

**Page:** 480

**View:** 3503

This text provides a historical perspective on plane geometry and covers non-neutral Euclidean geometry, circles and regular polygons, projective geometry, symmetries, inversions, informal topology, and more. Includes 1,000 practice problems. Solutions available. 2003 edition.
*(almost) Everything You Wanted to Know about Them*

**Author**: A. B. Katok,Vaughn Climenhaga

**Publisher:** American Mathematical Soc.

**ISBN:** 0821846795

**Category:** Mathematics

**Page:** 286

**View:** 2005

Surfaces are among the most common and easily visualized mathematical objects, and their study brings into focus fundamental ideas, concepts, and methods from geometry, topology, complex analysis, Morse theory, and group theory. At the same time, many of those notions appear in a technically simpler and more graphic form than in their general 'natural' settings. The first, primarily expository, chapter introduces many of the principal actors - the round sphere, flat torus, Mobius strip, Klein bottle, elliptic plane, etc. - as well as various methods of describing surfaces, beginning with the traditional representation by equations in three-dimensional space, proceeding to parametric representation, and also introducing the less intuitive, but central for our purposes, representation as factor spaces.It concludes with a preliminary discussion of the metric geometry of surfaces, and the associated isometry groups. Subsequent chapters introduce fundamental mathematical structures - topological, combinatorial (piecewise linear), smooth, Riemannian (metric), and complex - in the specific context of surfaces. The focal point of the book is the Euler characteristic, which appears in many different guises and ties together concepts from combinatorics, algebraic topology, Morse theory, ordinary differential equations, and Riemannian geometry.The repeated appearance of the Euler characteristic provides both a unifying theme and a powerful illustration of the notion of an invariant in all those theories. The assumed background is the standard calculus sequence, some linear algebra, and rudiments of ODE and real analysis. All notions are introduced and discussed, and virtually all results proved, based on this background. This book is a result of the MASS course in geometry in the fall semester of 2007.

**Author**: Tomasz Mrowka,Peter Steven Ozsváth

**Publisher:** American Mathematical Soc.

**ISBN:** 0821886967

**Category:** Mathematics

**Page:** 315

**View:** 7687

**Author**: Andrew J. Casson,Steven A. Bleiler

**Publisher:** Cambridge University Press

**ISBN:** 9780521349857

**Category:** Mathematics

**Page:** 104

**View:** 5191

A comprehensive introduction to selected aspects of modern low-dimensional topology for readers with a knowledge of basic algebra.

**Author**: Richard Evan Schwartz

**Publisher:** American Mathematical Soc.

**ISBN:** 0821853686

**Category:** Mathematics

**Page:** 314

**View:** 9075

**Author**: Wilfrid Hodges

**Publisher:** Cambridge University Press

**ISBN:** 9780521587136

**Category:** Mathematics

**Page:** 310

**View:** 5151

This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.
*The Vision of Felix Klein*

**Author**: David Mumford,Caroline Series,David Wright

**Publisher:** Cambridge University Press

**ISBN:** 9780521352536

**Category:** Mathematics

**Page:** 395

**View:** 9222

Highly illustrated realization of infinitely reflected images related to fractals, chaos and symmetry.
*An Introduction in 2 and 3 Dimensions*

**Author**: Albert Marden

**Publisher:** Cambridge University Press

**ISBN:** 1316432521

**Category:** Mathematics

**Page:** N.A

**View:** 5892

Over the past three decades there has been a total revolution in the classic branch of mathematics called 3-dimensional topology, namely the discovery that most solid 3-dimensional shapes are hyperbolic 3-manifolds. This book introduces and explains hyperbolic geometry and hyperbolic 3- and 2-dimensional manifolds in the first two chapters and then goes on to develop the subject. The author discusses the profound discoveries of the astonishing features of these 3-manifolds, helping the reader to understand them without going into long, detailed formal proofs. The book is heavily illustrated with pictures, mostly in color, that help explain the manifold properties described in the text. Each chapter ends with a set of exercises and explorations that both challenge the reader to prove assertions made in the text, and suggest further topics to explore that bring additional insight. There is an extensive index and bibliography.

**Author**: Jeffrey R. Weeks

**Publisher:** CRC Press

**ISBN:** 9780824707095

**Category:** Mathematics

**Page:** 408

**View:** 7416

Maintaining the standard of excellence set by the previous edition, this textbook covers the basic geometry of two- and three-dimensional spaces Written by a master expositor, leading researcher in the field, and MacArthur Fellow, it includes experiments to determine the true shape of the universe and contains illustrated examples and engaging exercises that teach mind-expanding ideas in an intuitive and informal way. Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.

**Author**: Henry Segerman

**Publisher:** JHU Press

**ISBN:** 1421420368

**Category:** Mathematics

**Page:** 200

**View:** 5727

Wouldn’t it be great to experience three-dimensional ideas in three dimensions? In this book—the first of its kind—mathematician and mathematical artist Henry Segerman takes readers on a fascinating tour of two-, three-, and four-dimensional mathematics, exploring Euclidean and non-Euclidean geometries, symmetry, knots, tilings, and soap films. Visualizing Mathematics with 3D Printing includes more than 100 color photographs of 3D printed models. Readers can take the book’s insights to a new level by visiting its sister website, 3dprintmath.com, which features virtual three-dimensional versions of the models for readers to explore. These models can also be ordered online or downloaded to print on a 3D printer. Combining the strengths of book and website, this volume pulls higher geometry and topology out of the realm of the abstract and puts it into the hands of anyone fascinated by mathematical relationships of shape. With the book in one hand and a 3D printed model in the other, readers can find deeper meaning while holding a hyperbolic honeycomb, touching the twists of a torus knot, or caressing the curves of a Klein quartic. -- Carlo H. Séquin
*Tactile Mathematics, Art and Craft for all to Explore, Second Edition*

**Author**: Daina Taimina

**Publisher:** CRC Press

**ISBN:** 1351402196

**Category:** Mathematics

**Page:** 200

**View:** 6753

Winner, Euler Book Prize, awarded by the Mathematical Association of America. With over 200 full color photographs, this non-traditional, tactile introduction to non-Euclidean geometries also covers early development of geometry and connections between geometry, art, nature, and sciences. For the crafter or would-be crafter, there are detailed instructions for how to crochet various geometric models and how to use them in explorations. New to the 2nd Edition; Daina Taimina discusses her own adventures with the hyperbolic planes as well as the experiences of some of her readers. Includes recent applications of hyperbolic geometry such as medicine, architecture, fashion & quantum computing.

**Author**: Dale Rolfsen

**Publisher:** American Mathematical Soc.

**ISBN:** 0821834363

**Category:** Mathematics

**Page:** 439

**View:** 3309

Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book"".
*An Introduction to Topology*

**Author**: J. Scott Carter

**Publisher:** World Scientific

**ISBN:** 9789810220662

**Category:** Science

**Page:** 318

**View:** 9180

This marvelous book of pictures illustrates the fundamental concepts of geometric topology in a way that is very friendly to the reader. It will be of value to anyone who wants to understand the subject by way of examples. Undergraduates, beginning graduate students, and non-professionals will profit from reading the book and from just looking at the pictures.
*String Theory and the Geometry of the Universe's Hidden Dimensions*

**Author**: Shing-Tung Yau,Steve Nadis

**Publisher:** Basic Books

**ISBN:** 0465022669

**Category:** Science

**Page:** 400

**View:** 6977

String theory says we live in a ten-dimensional universe, but that only four are accessible to our everyday senses. According to theorists, the missing six are curled up in bizarre structures known as Calabi-Yau manifolds. In The Shape of Inner Space, Shing-Tung Yau, the man who mathematically proved that these manifolds exist, argues that not only is geometry fundamental to string theory, it is also fundamental to the very nature of our universe. Time and again, where Yau has gone, physics has followed. Now for the first time, readers will follow Yau’s penetrating thinking on where we’ve been, and where mathematics will take us next. A fascinating exploration of a world we are only just beginning to grasp, The Shape of Inner Space will change the way we consider the universe on both its grandest and smallest scales.

**Author**: Matthias Aschenbrenner,Stefan Friedl,Henry Wilton

**Publisher:** Erich Schmidt Verlag GmbH & Co. KG

**ISBN:** 9783037191545

**Category:** Fundamental groups (Mathematics)

**Page:** 215

**View:** 8196

The field of 3-manifold topology has made great strides forward since 1982 when Thurston articulated his influential list of questions. Primary among these is Perelman's proof of the Geometrization Conjecture, but other highlights include the Tameness Theorem of Agol and Calegari-Gabai, the Surface Subgroup Theorem of Kahn-Markovic, the work of Wise and others on special cube complexes, and, finally, Agol's proof of the Virtual Haken Conjecture. This book summarizes all these developments and provides an exhaustive account of the current state of the art of 3-manifold topology, especially focusing on the consequences for fundamental groups of 3-manifolds. As the first book on 3-manifold topology that incorporates the exciting progress of the last two decades, it will be an invaluable resource for researchers in the field who need a reference for these developments. It also gives a fast-paced introduction to this material. Although some familiarity with the fundamental group is recommended, little other previous knowledge is assumed, and the book is accessible to graduate students. The book closes with an extensive list of open questions which will also be of interest to graduate students and established researchers.

Full PDF Download Free

This book presents a number of topics related to surfaces, such as Euclidean, spherical and hyperbolic geometry, the fundamental group, universal covering surfaces, Riemannian manifolds, the Gauss-Bonnet Theorem, and the Riemann mapping theorem. The main idea is to get to some interesting mathematics without too much formality. The book also includes some material only tangentially related to surfaces, such as the Cauchy Rigidity Theorem, the Dehn Dissection Theorem, and the Banach-Tarski Theorem.

The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigourous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis.

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy