Loop Spaces, Characteristic Classes and Geometric Quantization


Author: Jean-Luc Brylinski
Publisher: Springer Science & Business Media
ISBN: 9780817647308
Category: Mathematics
Page: 302
View: 491

Continue Reading →

This book deals with the differential geometry of manifolds, loop spaces, line bundles and groupoids, and the relations of this geometry to mathematical physics. Various developments in mathematical physics (e.g., in knot theory, gauge theory, and topological quantum field theory) have led mathematicians and physicists to search for new geometric structures on manifolds and to seek a synthesis of ideas from geometry, topology and category theory. In this spirit, this book develops the differential geometry associated to the topology and obstruction theory of certain fiber bundles (more precisely, associated to grebes). The theory is a 3-dimensional analog of the familiar Kostant--Weil theory of line bundles. In particular the curvature now becomes a 3-form. Applications presented in the book involve anomaly line bundles on loop spaces and anomaly functionals, central extensions of loop groups, Kähler geometry of the space of knots, Cheeger--Chern--Simons secondary characteristics classes, and group cohomology. Finally, the last chapter deals with the Dirac monopole and Dirac’s quantization of the electrical charge. The book will be of interest to topologists, geometers, Lie theorists and mathematical physicists, as well as to operator algebraists. It is written for graduate students and researchers, and will be an excellent textbook. It has a self-contained introduction to the theory of sheaves and their cohomology, line bundles and geometric prequantization à la Kostant--Souriau.

Perspectives on Noncommutative Geometry


Author: Masoud Khalkhali
Publisher: American Mathematical Soc.
ISBN: 0821848496
Category: Mathematics
Page: 163
View: 2381

Continue Reading →

This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This has now been vastly generalized through Connes' notion of spectral triples. Finally, recent years have witnessed the impact of number theory, algebraic geometry and the theory of motives, and quantum field theory on noncommutative geometry. Almost all of these aspects are touched upon with new results in the papers of this volume. This book is intended for graduate students and researchers in both mathematics and theoretical physics who are interested in noncommutative geometry and its applications.

Discriminants, Resultants, and Multidimensional Determinants


Author: Israel M. Gelfand,Mikhail Kapranov,Andrei Zelevinsky
Publisher: Springer Science & Business Media
ISBN: 0817647716
Category: Mathematics
Page: 523
View: 7751

Continue Reading →

"This book revives and vastly expands the classical theory of resultants and discriminants. Most of the main new results of the book have been published earlier in more than a dozen joint papers of the authors. The book nicely complements these original papers with many examples illustrating both old and new results of the theory."—Mathematical Reviews

A Concise Treatise on Quantum Mechanics in Phase Space


Author: Thomas L Curtright,David B Fairlie,Cosmas K Zachos
Publisher: World Scientific Publishing Company
ISBN: 9814520462
Category: Science
Page: 172
View: 3397

Continue Reading →

This is a text on quantum mechanics formulated simultaneously in terms of position and momentum, i.e. in phase space. It is written at an introductory level, drawing on the remarkable history of the subject for inspiration and motivation. Wigner functions — density matrices in a special Weyl representation — and star products are the cornerstones of the formalism. The resulting framework is a rich source of physical intuition. It has been used to describe transport in quantum optics, structure and dynamics in nuclear physics, chaos, and decoherence in quantum computing. It is also of importance in signal processing and the mathematics of algebraic deformation. A remarkable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged in the last quarter-century: it furnishes a third, alternative way to formulate and understand quantum mechanics, independent of the conventional Hilbert space or path integral approaches to the subject. In this logically complete and self-standing formulation, one need not choose sides between coordinate or momentum space variables. It works in full phase space, accommodating the uncertainty principle; and it offers unique insights into the classical limit of quantum theory. The observables in this formulation are c-number functions in phase space instead of operators, with the same interpretation as their classical counterparts, only composed together in novel algebraic ways using star products. This treatise provides an introductory overview and supplementary material suitable for an advanced undergraduate or a beginning graduate course in quantum mechanics.

Mathematics of Bioinformatics

Theory, Methods and Applications
Author: Matthew He,Sergey Petoukhov
Publisher: John Wiley & Sons
ISBN: 9781118099520
Category: Computers
Page: 298
View: 3896

Continue Reading →

Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.

A Primer on String Theory


Author: Volker Schomerus
Publisher: Cambridge University Press
ISBN: 1107160014
Category: Science
Page: 240
View: 7894

Continue Reading →

Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.

Quantum Gravity

Mathematical Models and Experimental Bounds
Author: Bertfried Fauser,Jürgen Tolksdorf,Eberhard Zeidler
Publisher: Springer Science & Business Media
ISBN: 9783764379780
Category: Science
Page: 336
View: 1227

Continue Reading →

This book provides the reader with an overview of the different mathematical attempts to quantize gravity written by leading experts in this field. Also discussed are the possible experimental bounds on quantum gravity effects. The contributions have been strictly refereed and are written in an accessible style. The present volume emerged from the 2nd Blaubeuren Workshop "Mathematical and Physical Aspects of Quantum Gravity".

Elementary Functions

Algorithms and Implementation
Author: Jean-Michel Muller
Publisher: Birkhäuser
ISBN: 1489979832
Category: Computers
Page: 283
View: 7302

Continue Reading →

This textbook presents the concepts and tools necessary to understand, build, and implement algorithms for computing elementary functions (e.g., logarithms, exponentials, and the trigonometric functions). Both hardware- and software-oriented algorithms are included, along with issues related to accurate floating-point implementation. This third edition has been updated and expanded to incorporate the most recent advances in the field, new elementary function algorithms, and function software. After a preliminary chapter that briefly introduces some fundamental concepts of computer arithmetic, such as floating-point arithmetic and redundant number systems, the text is divided into three main parts. Part I considers the computation of elementary functions using algorithms based on polynomial or rational approximations and using table-based methods; the final chapter in this section deals with basic principles of multiple-precision arithmetic. Part II is devoted to a presentation of “shift-and-add” algorithms (hardware-oriented algorithms that use additions and shifts only). Issues related to accuracy, including range reduction, preservation of monotonicity, and correct rounding, as well as some examples of implementation are explored in Part III. Numerous examples of command lines and full programs are provided throughout for various software packages, including Maple, Sollya, and Gappa. New to this edition are an in-depth overview of the IEEE-754-2008 standard for floating-point arithmetic; a section on using double- and triple-word numbers; a presentation of new tools for designing accurate function software; and a section on the Toom-Cook family of multiplication algorithms. The techniques presented in this book will be of interest to implementers of elementary function libraries or circuits and programmers of numerical applications. Additionally, graduate and advanced undergraduate students, professionals, and researchers in scientific computing, numerical analysis, software engineering, and computer engineering will find this a useful reference and resource. PRAISE FOR PREVIOUS EDITIONS “[T]his book seems like an essential reference for the experts (which I'm not). More importantly, this is an interesting book for the curious (which I am). In this case, you'll probably learn many interesting things from this book. If you teach numerical analysis or approximation theory, then this book will give you some good examples to discuss in class." — MAA Reviews (Review of Second Edition) "The rich content of ideas sketched or presented in some detail in this book is supplemented by a list of over three hundred references, most of them of 1980 or more recent. The book also contains some relevant typical programs." — Zentralblatt MATH (Review of Second Edition) “I think that the book will be very valuable to students both in numerical analysis and in computer science. I found [it to be] well written and containing much interesting material, most of the time disseminated in specialized papers published in specialized journals difficult to find." — Numerical Algorithms (Review of First Edition)

Nonlinear Dynamics of Chaotic and Stochastic Systems

Tutorial and Modern Developments
Author: Vadim S. Anishchenko,Vladimir Astakhov,Alexander Neiman,Tatjana Vadivasova,Lutz Schimansky-Geier
Publisher: Springer Science & Business Media
ISBN: 3540381686
Category: Science
Page: 446
View: 5681

Continue Reading →

We present an improved and enlarged version of our book Nonlinear - namics of Chaotic and Stochastic Systems published by Springer in 2002. Basically, the new edition of the book corresponds to its ?rst version. While preparingthiseditionwemadesomeclari?cationsinseveralsectionsandalso corrected the misprints noticed in some formulas. Besides, three new sections have been added to Chapter 2. They are “Statistical Properties of Dynamical Chaos,” “E?ects of Synchronization in Extended Self-Sustained Oscillatory Systems,” and “Synchronization in Living Systems.” The sections indicated re?ect the most interesting results obtained by the authors after publication of the ?rst edition. We hope that the new edition of the book will be of great interest for a widesectionofreaderswhoarealreadyspecialistsorthosewhoarebeginning research in the ?elds of nonlinear oscillation and wave theory, dynamical chaos, synchronization, and stochastic process theory. Saratov, Berlin, and St. Louis V.S. Anishchenko November 2006 A.B. Neiman T.E. Vadiavasova V.V. Astakhov L. Schimansky-Geier Preface to the First Edition Thisbookisdevotedtotheclassicalbackgroundandtocontemporaryresults on nonlinear dynamics of deterministic and stochastic systems. Considerable attentionisgiventothee?ectsofnoiseonvariousregimesofdynamicsystems with noise-induced order. On the one hand, there exists a rich literature of excellent books on n- linear dynamics and chaos; on the other hand, there are many marvelous monographs and textbooks on the statistical physics of far-from-equilibrium andstochasticprocesses.Thisbookisanattempttocombinetheapproachof nonlinear dynamics based on the deterministic evolution equations with the approach of statistical physics based on stochastic or kinetic equations. One of our main aims is to show the important role of noise in the organization and properties of dynamic regimes of nonlinear dissipative systems.

An Introduction to Frames


Author: Jelena Kovacevic,Amina Chebira
Publisher: Now Publishers Inc
ISBN: 160198068X
Category: Computers
Page: 100
View: 2711

Continue Reading →

An Introduction to Frames is an introduction to redundant signal representations called frames. These representations have recently emerged as yet another powerful tool in the signal processing toolbox, spurred by a host of recent applications requiring some level of redundancy. It asks the question: Why and where should one use frames? And answers emphatically: Anywhere where redundancy is a must. It then goes on to discuss a host of applications that richly illustrate that answer. An Introduction to Frames is geared primarily toward engineering students and those without extensive mathematical training. It is also intended to help researchers and practitioners decide whether frames are the right tool for their application.

Numerical Methods in Finance

Bordeaux, June 2010
Author: René Carmona,Pierre Del Moral,Peng Hu,Nadia Oudjane
Publisher: Springer Science & Business Media
ISBN: 3642257461
Category: Mathematics
Page: 474
View: 5815

Continue Reading →

Numerical methods in finance have emerged as a vital field at the crossroads of probability theory, finance and numerical analysis. Based on presentations given at the workshop Numerical Methods in Finance held at the INRIA Bordeaux (France) on June 1-2, 2010, this book provides an overview of the major new advances in the numerical treatment of instruments with American exercises. Naturally it covers the most recent research on the mathematical theory and the practical applications of optimal stopping problems as they relate to financial applications. By extension, it also provides an original treatment of Monte Carlo methods for the recursive computation of conditional expectations and solutions of BSDEs and generalized multiple optimal stopping problems and their applications to the valuation of energy derivatives and assets. The articles were carefully written in a pedagogical style and a reasonably self-contained manner. The book is geared toward quantitative analysts, probabilists, and applied mathematicians interested in financial applications.

The Finiteness Obstruction of C. T. C. Wall


Author: Kalathoor Varadarajan
Publisher: Wiley-Interscience
ISBN: N.A
Category: Mathematics
Page: 194
View: 4318

Continue Reading →

This monograph gives an account of C. T. C. Wall's work on finiteness conditions on CW-complexes. Varadarayan recasts Wall's obstruction proofs in algebraic terms (the proofs depending upon results from algebraic number theory and on K-theoretic induction theorems), and ends with a study of finitely-dominated nilpotent spaces. Most of the material in this volume appears for the first time in book form.

Unsolved Problems in Mathematical Systems and Control Theory


Author: Vincent D. Blondel,Alexandre Megretski
Publisher: Princeton University Press
ISBN: 1400826152
Category: Mathematics
Page: 352
View: 1512

Continue Reading →

This book provides clear presentations of more than sixty important unsolved problems in mathematical systems and control theory. Each of the problems included here is proposed by a leading expert and set forth in an accessible manner. Covering a wide range of areas, the book will be an ideal reference for anyone interested in the latest developments in the field, including specialists in applied mathematics, engineering, and computer science. The book consists of ten parts representing various problem areas, and each chapter sets forth a different problem presented by a researcher in the particular area and in the same way: description of the problem, motivation and history, available results, and bibliography. It aims not only to encourage work on the included problems but also to suggest new ones and generate fresh research. The reader will be able to submit solutions for possible inclusion on an online version of the book to be updated quarterly on the Princeton University Press website, and thus also be able to access solutions, updated information, and partial solutions as they are developed.

Mathematical Lives

Protagonists of the Twentieth Century From Hilbert to Wiles
Author: CLAUDIO BARTOCCI,Renato Betti,Angelo Guerraggio,Roberto Lucchetti
Publisher: Springer Science & Business Media
ISBN: 9783642136061
Category: Mathematics
Page: 238
View: 6493

Continue Reading →

Steps forward in mathematics often reverberate in other scientific disciplines, and give rise to innovative conceptual developments or find surprising technological applications. This volume brings to the forefront some of the proponents of the mathematics of the twentieth century, who have put at our disposal new and powerful instruments for investigating the reality around us. The portraits present people who have impressive charisma and wide-ranging cultural interests, who are passionate about defending the importance of their own research, are sensitive to beauty, and attentive to the social and political problems of their times. What we have sought to document is mathematics’ central position in the culture of our day. Space has been made not only for the great mathematicians but also for literary texts, including contributions by two apparent interlopers, Robert Musil and Raymond Queneau, for whom mathematical concepts represented a valuable tool for resolving the struggle between ‘soul and precision.’

Computational Intelligence in Optimization

Applications and Implementations
Author: Yoel Tenne,Chi-Keong Goh
Publisher: Springer Science & Business Media
ISBN: 9783642127755
Category: Computers
Page: 412
View: 1567

Continue Reading →

This collection of recent studies spans a range of computational intelligence applications, emphasizing their application to challenging real-world problems. Covers Intelligent agent-based algorithms, Hybrid intelligent systems, Machine learning and more.

Handbook of Differential Geometry


Author: F.J.E. Dillen,L.C.A. Verstraelen
Publisher: Elsevier
ISBN: 9780080532837
Category: Mathematics
Page: 1053
View: 7312

Continue Reading →

In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.

Integral Equation Methods for Electromagnetic and Elastic Waves


Author: Weng Cho Chew,Mei Song Tong,Bin Hu
Publisher: Morgan & Claypool Publishers
ISBN: 1598291483
Category: Technology & Engineering
Page: 241
View: 4490

Continue Reading →

Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners.

Vertex Algebras and Algebraic Curves: Second Edition


Author: Edward Frenkel,David Ben-Zvi
Publisher: American Mathematical Soc.
ISBN: 0821836749
Category: Mathematics
Page: 400
View: 6863

Continue Reading →

Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.

Spectral Functions in Mathematics and Physics


Author: Klaus Kirsten
Publisher: CRC Press
ISBN: 1420035460
Category: Science
Page: 400
View: 8554

Continue Reading →

The literature on the spectral analysis of second order elliptic differential operators contains a great deal of information on the spectral functions for explicitly known spectra. The same is not true, however, for situations where the spectra are not explicitly known. Over the last several years, the author and his colleagues have developed new, innovative methods for the exact analysis of a variety of spectral functions occurring in spectral geometry and under external conditions in statistical mechanics and quantum field theory. Spectral Functions in Mathematics and Physics presents a detailed overview of these advances. The author develops and applies methods for analyzing determinants arising when the external conditions originate from the Casimir effect, dielectric media, scalar backgrounds, and magnetic backgrounds. The zeta function underlies all of these techniques, and the book begins by deriving its basic properties and relations to the spectral functions. The author then uses those relations to develop and apply methods for calculating heat kernel coefficients, functional determinants, and Casimir energies. He also explores applications in the non-relativistic context, in particular applying the techniques to the Bose-Einstein condensation of an ideal Bose gas. Self-contained and clearly written, Spectral Functions in Mathematics and Physics offers a unique opportunity to acquire valuable new techniques, use them in a variety of applications, and be inspired to make further advances.