Lectures on Discrete Geometry


Author: Ji?í Matoušek
Publisher: Springer Science & Business Media
ISBN: 1461300398
Category: Mathematics
Page: 486
View: 7223

Continue Reading →

The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.

Classical Topics in Discrete Geometry


Author: Károly Bezdek
Publisher: Springer Science & Business Media
ISBN: 9781441906007
Category: Mathematics
Page: 166
View: 1017

Continue Reading →

Geometry is a classical core part of mathematics which, with its birth, marked the beginning of the mathematical sciences. Thus, not surprisingly, geometry has played a key role in many important developments of mathematics in the past, as well as in present times. While focusing on modern mathematics, one has to emphasize the increasing role of discrete mathematics, or equivalently, the broad movement to establish discrete analogues of major components of mathematics. In this way, the works of a number of outstanding mathema- cians including H. S. M. Coxeter (Canada), C. A. Rogers (United Kingdom), and L. Fejes-T oth (Hungary) led to the new and fast developing eld called discrete geometry. One can brie y describe this branch of geometry as the study of discrete arrangements of geometric objects in Euclidean, as well as in non-Euclidean spaces. This, as a classical core part, also includes the theory of polytopes and tilings in addition to the theory of packing and covering. D- crete geometry is driven by problems often featuring a very clear visual and applied character. The solutions use a variety of methods of modern mat- matics, including convex and combinatorial geometry, coding theory, calculus of variations, di erential geometry, group theory, and topology, as well as geometric analysis and number theory.

The Geometry of Discrete Groups


Author: Alan F. Beardon
Publisher: Springer Science & Business Media
ISBN: 1461211468
Category: Mathematics
Page: 340
View: 8903

Continue Reading →

This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.

Discrete Differential Geometry

Integrable Structure
Author: Alexander I. Bobenko,Yuri B. Suris
Publisher: American Mathematical Soc.
ISBN: 0821847007
Category: Mathematics
Page: 404
View: 8199

Continue Reading →

An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of Integrable systems. One of the main goals of this book Is to reveal this integrable structure of discrete differential geometry. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question "How do we discretize differential geometry?" arising in their specific field.

Forbidden Configurations in Discrete Geometry


Author: David Eppstein
Publisher: Cambridge University Press
ISBN: 1108423914
Category: Computers
Page: 194
View: 8331

Continue Reading →

Unifies discrete and computational geometry by using forbidden patterns of points to characterize many of its problems.

Lectures on Polytopes


Author: Günter M. Ziegler
Publisher: Springer Science & Business Media
ISBN: 9780387943657
Category: Mathematics
Page: 370
View: 7949

Continue Reading →

Based on a graduate course at the Technische Universität, Berlin, this book presents a wealth of material on the modern theory of convex polytopes. With linear algebra as a prerequisite, the text moves quickly from the basics to topics of recent research.

Foundations of Hyperbolic Manifolds


Author: John Ratcliffe
Publisher: Springer Science & Business Media
ISBN: 1475740131
Category: Mathematics
Page: 750
View: 1737

Continue Reading →

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

Using the Borsuk-Ulam Theorem

Lectures on Topological Methods in Combinatorics and Geometry
Author: Jiri Matousek
Publisher: Springer Science & Business Media
ISBN: 3540766499
Category: Mathematics
Page: 214
View: 6997

Continue Reading →

To the uninitiated, algebraic topology might seem fiendishly complex, but its utility is beyond doubt. This brilliant exposition goes back to basics to explain how the subject has been used to further our understanding in some key areas. A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. This book is the first textbook treatment of a significant part of these results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level. No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained.

Lectures in Geometric Combinatorics


Author: Rekha R. Thomas
Publisher: American Mathematical Soc.
ISBN: 9780821841402
Category: Mathematics
Page: 143
View: 7223

Continue Reading →

This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the state polytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics.The connections rely on Grobner bases of toric ideals and other methods from commutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.

Discrete Mathematics

Elementary and Beyond
Author: László Lovász,József Pelikán,Katalin Vesztergombi
Publisher: Springer Science & Business Media
ISBN: 0387217770
Category: Mathematics
Page: 284
View: 4816

Continue Reading →

Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.

Mathematics++


Author: Ida Kantor, Jiří Matoušek,Robert Šámal
Publisher: American Mathematical Soc.
ISBN: 1470422611
Category: MATHEMATICS
Page: 343
View: 3612

Continue Reading →

Mathematics++ is a concise introduction to six selected areas of 20th century mathematics providing numerous modern mathematical tools used in contemporary research in computer science, engineering, and other fields. The areas are: measure theory, high-dimensional geometry, Fourier analysis, representations of groups, multivariate polynomials, and topology. For each of the areas, the authors introduce basic notions, examples, and results. The presentation is clear and accessible, stressing intuitive understanding, and it includes carefully selected exercises as an integral part. Theory is complemented by applications--some quite surprising--in theoretical computer science and discrete mathematics. The chapters are independent of one another and can be studied in any order. It is assumed that the reader has gone through the basic mathematics courses. Although the book was conceived while the authors were teaching Ph.D. students in theoretical computer science and discrete mathematics, it will be useful for a much wider audience, such as mathematicians specializing in other areas, mathematics students deciding what specialization to pursue, or experts in engineering or other fields.

Convex and Discrete Geometry


Author: Peter Gruber
Publisher: Springer Science & Business Media
ISBN: 3540711333
Category: Mathematics
Page: 580
View: 6019

Continue Reading →

Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other subdisciplines. This book provides a comprehensive overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers, and useful to people working in the applied fields.

The Arithmetic of Hyperbolic 3-Manifolds


Author: Colin Maclachlan,Alan W. Reid
Publisher: Springer Science & Business Media
ISBN: 147576720X
Category: Mathematics
Page: 467
View: 5703

Continue Reading →

Recently there has been considerable interest in developing techniques based on number theory to attack problems of 3-manifolds; Contains many examples and lots of problems; Brings together much of the existing literature of Kleinian groups in a clear and concise way; At present no such text exists

Discrete Mathematics in Statistical Physics

Introductory Lectures
Author: Martin Loebl
Publisher: Springer Science & Business Media
ISBN: 3834893293
Category: Science
Page: 187
View: 6366

Continue Reading →

The book first describes connections between some basic problems and technics of combinatorics and statistical physics. The discrete mathematics and physics terminology are related to each other. Using the established connections, some exciting activities in one field are shown from a perspective of the other field. The purpose of the book is to emphasize these interactions as a strong and successful tool. In fact, this attitude has been a strong trend in both research communities recently. It also naturally leads to many open problems, some of which seem to be basic. Hopefully, this book will help making these exciting problems attractive to advanced students and researchers.

A Course in p-adic Analysis


Author: Alain M. Robert
Publisher: Springer Science & Business Media
ISBN: 1475732546
Category: Mathematics
Page: 438
View: 6753

Continue Reading →

Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.

An Introduction to Ergodic Theory


Author: Peter Walters
Publisher: Springer Science & Business Media
ISBN: 9780387951522
Category: Mathematics
Page: 250
View: 6335

Continue Reading →

The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics.

Mod Two Homology and Cohomology


Author: Jean-Claude Hausmann
Publisher: Springer
ISBN: 3319093541
Category: Mathematics
Page: 535
View: 3974

Continue Reading →

Cohomology and homology modulo 2 helps the reader grasp more readily the basics of a major tool in algebraic topology. Compared to a more general approach to (co)homology this refreshing approach has many pedagogical advantages: 1. It leads more quickly to the essentials of the subject, 2. An absence of signs and orientation considerations simplifies the theory, 3. Computations and advanced applications can be presented at an earlier stage, 4. Simple geometrical interpretations of (co)chains. Mod 2 (co)homology was developed in the first quarter of the twentieth century as an alternative to integral homology, before both became particular cases of (co)homology with arbitrary coefficients. The first chapters of this book may serve as a basis for a graduate-level introductory course to (co)homology. Simplicial and singular mod 2 (co)homology are introduced, with their products and Steenrod squares, as well as equivariant cohomology. Classical applications include Brouwer's fixed point theorem, Poincaré duality, Borsuk-Ulam theorem, Hopf invariant, Smith theory, Kervaire invariant, etc. The cohomology of flag manifolds is treated in detail (without spectral sequences), including the relationship between Stiefel-Whitney classes and Schubert calculus. More recent developments are also covered, including topological complexity, face spaces, equivariant Morse theory, conjugation spaces, polygon spaces, amongst others. Each chapter ends with exercises, with some hints and answers at the end of the book.

An Introduction to Convex Polytopes


Author: Arne Brondsted
Publisher: Springer Science & Business Media
ISBN: 1461211484
Category: Mathematics
Page: 162
View: 4687

Continue Reading →

The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in [R1d will suffice.

Fuchsian Groups


Author: Svetlana Katok
Publisher: University of Chicago Press
ISBN: 9780226425825
Category: Mathematics
Page: 175
View: 9422

Continue Reading →

This introductory text provides a thoroughly modern treatment of Fuchsian groups that addresses both the classical material and recent developments in the field. A basic example of lattices in semisimple groups, Fuchsian groups have extensive connections to the theory of a single complex variable, number theory, algebraic and differential geometry, topology, Lie theory, representation theory, and group theory.

Research Problems in Discrete Geometry


Author: Peter Brass,William O. J. Moser,János Pach
Publisher: Springer Science & Business Media
ISBN: 0387238158
Category: Mathematics
Page: 499
View: 3523

Continue Reading →

This book is a collection of more than 500 attractive open problems in the field. The largely self-contained chapters provide a broad overview of discrete geometry, along with historical details and the most important partial results related to these problems.