Lectures on Discrete Geometry


Author: Ji?í Matoušek
Publisher: Springer Science & Business Media
ISBN: 1461300398
Category: Mathematics
Page: 486
View: 5324

Continue Reading →

The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.

Mod Two Homology and Cohomology


Author: Jean-Claude Hausmann
Publisher: Springer
ISBN: 3319093541
Category: Mathematics
Page: 535
View: 1094

Continue Reading →

Cohomology and homology modulo 2 helps the reader grasp more readily the basics of a major tool in algebraic topology. Compared to a more general approach to (co)homology this refreshing approach has many pedagogical advantages: 1. It leads more quickly to the essentials of the subject, 2. An absence of signs and orientation considerations simplifies the theory, 3. Computations and advanced applications can be presented at an earlier stage, 4. Simple geometrical interpretations of (co)chains. Mod 2 (co)homology was developed in the first quarter of the twentieth century as an alternative to integral homology, before both became particular cases of (co)homology with arbitrary coefficients. The first chapters of this book may serve as a basis for a graduate-level introductory course to (co)homology. Simplicial and singular mod 2 (co)homology are introduced, with their products and Steenrod squares, as well as equivariant cohomology. Classical applications include Brouwer's fixed point theorem, Poincaré duality, Borsuk-Ulam theorem, Hopf invariant, Smith theory, Kervaire invariant, etc. The cohomology of flag manifolds is treated in detail (without spectral sequences), including the relationship between Stiefel-Whitney classes and Schubert calculus. More recent developments are also covered, including topological complexity, face spaces, equivariant Morse theory, conjugation spaces, polygon spaces, amongst others. Each chapter ends with exercises, with some hints and answers at the end of the book.

Lectures on Sphere Arrangements – the Discrete Geometric Side


Author: Károly Bezdek
Publisher: Springer Science & Business Media
ISBN: 146148118X
Category: Mathematics
Page: 175
View: 4315

Continue Reading →

This monograph gives a short introduction to the relevant modern parts of discrete geometry, in addition to leading the reader to the frontiers of geometric research on sphere arrangements. The readership is aimed at advanced undergraduate and early graduate students, as well as interested researchers. It contains more than 40 open research problems ideal for graduate students and researchers in mathematics and computer science. Additionally, this book may be considered ideal for a one-semester advanced undergraduate or graduate level course. The core part of this book is based on three lectures given by the author at the Fields Institute during the thematic program on “Discrete Geometry and Applications” and contains four core topics. The first two topics surround active areas that have been outstanding from the birth of discrete geometry, namely dense sphere packings and tilings. Sphere packings and tilings have a very strong connection to number theory, coding, groups, and mathematical programming. Extending the tradition of studying packings of spheres, is the investigation of the monotonicity of volume under contractions of arbitrary arrangements of spheres. The third major topic of this book can be found under the sections on ball-polyhedra that study the possibility of extending the theory of convex polytopes to the family of intersections of congruent balls. This section of the text is connected in many ways to the above-mentioned major topics and it is also connected to some other important research areas as the one on coverings by planks (with close ties to geometric analysis). This fourth core topic is discussed under covering balls by cylinders.

Discrete Geometry and Symmetry

Dedicated to Károly Bezdek and Egon Schulte on the Occasion of Their 60th Birthdays
Author: Marston D. E. Conder,Antoine Deza,Asia Ivić Weiss
Publisher: Springer
ISBN: 331978434X
Category: Mathematics
Page: 333
View: 5032

Continue Reading →

This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference “Geometry and Symmetry” in Veszprém, Hungary from 29 June to 3 July 2015. The conference was dedicated to Károly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.

Lectures in Geometric Combinatorics


Author: Rekha R. Thomas
Publisher: American Mathematical Soc.
ISBN: 9780821841402
Category: Mathematics
Page: 143
View: 956

Continue Reading →

This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the state polytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics.The connections rely on Grobner bases of toric ideals and other methods from commutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.

Algorithmische Geometrie

Polyedrische und algebraische Methoden
Author: Michael Joswig,Thorsten Theobald
Publisher: Springer-Verlag
ISBN: 3834894400
Category: Mathematics
Page: 266
View: 611

Continue Reading →

In dem Lehrbuch wird eine mathematisch orientierte Einführung in die algorithmische Geometrie gegeben. Im ersten Teil werden „klassische“ Probleme und Techniken behandelt, die sich auf polyedrische (= linear begrenzte) Objekte beziehen. Hierzu gehören beispielsweise Algorithmen zur Berechnung konvexer Hüllen und die Konstruktion von Voronoi-Diagrammen. Im zweiten Teil werden grundlegende Methoden der algorithmischen algebraischen Geometrie entwickelt und anhand von Anwendungen aus Computergrafik, Kurvenrekonstruktion und Robotik illustriert. Das Buch eignet sich für ein fortgeschrittenes Modul in den derzeit neu konzipierten Bachelor-Studiengängen in Mathematik und Informatik.

Using the Borsuk-Ulam Theorem

Lectures on Topological Methods in Combinatorics and Geometry
Author: Jiri Matousek
Publisher: Springer Science & Business Media
ISBN: 3540766499
Category: Mathematics
Page: 214
View: 3652

Continue Reading →

To the uninitiated, algebraic topology might seem fiendishly complex, but its utility is beyond doubt. This brilliant exposition goes back to basics to explain how the subject has been used to further our understanding in some key areas. A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. This book is the first textbook treatment of a significant part of these results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level. No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained.

Approximative Algorithmen und Nichtapproximierbarkeit


Author: Klaus Jansen,Marian Margraf
Publisher: Walter de Gruyter
ISBN: 3110203170
Category: Mathematics
Page: 501
View: 9677

Continue Reading →

Gegenstand dieses Lehrbuchs ist die Behandlung schwer lösbarer diskreter Optimierungsprobleme. Im ersten Teil werden schnelle Algorithmen vorgestellt, die solche Probleme näherungsweise lösen können. Der zweite Teil behandelt Komplexitätstheorie und Nichtapproximierbarkeit von Optimierungsproblemen. Das Lehrbuch enthält zudem zahlreiche Anwendungsbeispiele, Übungsaufgaben, Illustrationen und Abschnitte über Grundlagen wie etwa die Turingmaschine.

An Introduction to Compactness Results in Symplectic Field Theory


Author: Casim Abbas
Publisher: Springer Science & Business Media
ISBN: 3642315437
Category: Mathematics
Page: 252
View: 2981

Continue Reading →

This book provides an introduction to symplectic field theory, a new and important subject which is currently being developed. The starting point of this theory are compactness results for holomorphic curves established in the last decade. The author presents a systematic introduction providing a lot of background material, much of which is scattered throughout the literature. Since the content grew out of lectures given by the author, the main aim is to provide an entry point into symplectic field theory for non-specialists and for graduate students. Extensions of certain compactness results, which are believed to be true by the specialists but have not yet been published in the literature in detail, top off the scope of this monograph.

Discrete Geometry


Author: Andras Bezdek
Publisher: CRC Press
ISBN: 0824747615
Category: Mathematics
Page: 464
View: 8113

Continue Reading →

Celebrating the work of Professor W. Kuperberg, this reference explores packing and covering theory, tilings, combinatorial and computational geometry, and convexity, featuring an extensive collection of problems compiled at the Discrete Geometry Special Session of the American Mathematical Society in New Orleans, Louisiana. Discrete Geometry analyzes packings and coverings with congruent convex bodies , arrangements on the sphere, line transversals, Euclidean and spherical tilings, geometric graphs, polygons and polyhedra, and fixing systems for convex figures. This text also offers research and contributions from more than 50 esteemed international authorities, making it a valuable addition to any mathematical library.

Novel Approaches to Hard Discrete Optimization


Author: Panos M. Pardalos,Henry Wolkowicz
Publisher: American Mathematical Soc.
ISBN: 9780821885918
Category: Mathematics
Page: 181
View: 5874

Continue Reading →

During the last decade, many novel approaches have been considered for dealing with computationally difficult discrete optimization problems. Such approaches include interior point methods, semidefinite programming techniques, and global optimization. More efficient computational algorithms have been developed and larger problem instances of hard discrete problems have been solved. This progress is due in part to these novel approaches, but also to new computing facilities and massive parallelism. This volume contains the papers presented at the workshop on ''Novel Approaches to Hard Discrete Optimization''. The articles cover a spectrum of issues regarding computationally hard discrete problems.

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik
Author: Detlef Laugwitz
Publisher: Springer-Verlag
ISBN: 3034889836
Category: Mathematics
Page: 348
View: 8982

Continue Reading →

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."

Topics in Combinatorial Group Theory


Author: Gilbert Baumslag
Publisher: Springer Science & Business Media
ISBN: 9783764329211
Category: Mathematics
Page: 170
View: 8620

Continue Reading →

Combinatorial group theory is a loosely defined subject, with close connections to topology and logic. With surprising frequency, problems in a wide variety of disciplines, including differential equations, automorphic functions and geometry, have been distilled into explicit questions about groups, typically of the following kind: Are the groups in a given class finite (e.g., the Burnside problem)? Finitely generated? Finitely presented? What are the conjugates of a given element in a given group? What are the subgroups of that group? Is there an algorithm for deciding for every pair of groups in a given class whether they are isomorphic or not? The objective of combinatorial group theory is the systematic development of algebraic techniques to settle such questions. In view of the scope of the subject and the extraordinary variety of groups involved, it is not surprising that no really general theory exists. These notes, bridging the very beginning of the theory to new results and developments, are devoted to a number of topics in combinatorial group theory and serve as an introduction to the subject on the graduate level.

Stratified Lie Groups and Potential Theory for Their Sub-Laplacians


Author: Andrea Bonfiglioli,Ermanno Lanconelli,Francesco Uguzzoni
Publisher: Springer Science & Business Media
ISBN: 3540718974
Category: Mathematics
Page: 802
View: 5701

Continue Reading →

This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.

Algebraic Topology

A First Course
Author: William Fulton
Publisher: Springer Science & Business Media
ISBN: 1461241804
Category: Mathematics
Page: 430
View: 4367

Continue Reading →

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

Bilder der Mathematik


Author: Georg Glaeser,Konrad Polthier
Publisher: Springer Spektrum
ISBN: 9783662434161
Category: Mathematics
Page: 340
View: 3992

Continue Reading →

Wie sieht eine Kurve aus, die die ganze Ebene oder den Raum vollständig ausfüllt? Kann man einen Polyeder flexibel bewegen, ja sogar umstülpen? Was ist die projektive Ebene oder der vierdimensionale Raum? Gibt es Seifenblasen, die keine runden Kugel sind? Wie kann man die komplizierte Struktur von Strömungen besser verstehen? In diesem Buch erleben Sie die Mathematik von ihrer anschaulichen Seite und finden faszinierende und bisher nie gesehene Bilder, die Ihnen illustrative Antworten zu all diesen Fragestellungen geben. Zu allen Bildern gibt es kurze Erklärungstexte, viele Literaturhinweise und jede Menge Web-Links. Das Buch ist für alle Freunde der Mathematik, die nicht nur trockenen Text und endlose Formeln sehen wollen. Vom Schüler zum Lehrer, vom Studenten zum Professor. Es soll sie alle inspirieren und anregen, sich mit diesem oder jenem vermeintlich nur Insidern vorbehaltenem Thema zu beschäftigen. Lernen Sie die Mathematik von einer ganz neuen und bunten Seite kennen. Die Neuauflage ist vollständig durchgesehen und um acht Doppelseiten mit neuen und spektakulären Bildern ergänzt. Stimmen zur 1. Auflage: „Die durchweg exzellenten grafischen Veranschaulichungen geben gute Beispiele, wie man elegant und sauber argumentiert. Möge dieses Buch viele Leserinnen und Leser zur Mathematik verführen." c't 17/09 „In den ‚Bildern der Mathematik‘ kann man nach Herzenslust schmökern. Denn die einzelnen Mathematik-Häppchen und kleinen Geschichten sind zwar thematisch geordnet, bauen aber nicht aufeinander auf. So ist dieses Buch – für ein mathematisches Sachbuch sicher erstaunlich – sogar für den Nachttisch geeignet." Deutschlandradio Kultur