*Lessons from Modern Concepts*

**Author**: Ilya L. Shapiro,Guilherme de Berredo-Peixoto

**Publisher:**Springer Science & Business Media

**ISBN:**1461478251

**Category:**Science

**Page:**250

**View:**2694

Skip to content
# Search Results for: lecture-notes-on-newtonian-mechanics-lessons-from-modern-concepts-undergraduate-lecture-notes-in-physics

*Lessons from Modern Concepts*

**Author**: Ilya L. Shapiro,Guilherme de Berredo-Peixoto

**Publisher:** Springer Science & Business Media

**ISBN:** 1461478251

**Category:** Science

**Page:** 250

**View:** 2694

One could make the claim that all branches of physics are basically generalizations of classical mechanics. It is also often the first course which is taught to physics students. The approach of this book is to construct an intermediate discipline between general courses of physics and analytical mechanics, using more sophisticated mathematical tools. The aim of this book is to prepare a self-consistent and compact text that is very useful for teachers as well as for independent study.
*From the Cosmos to Quarks*

**Author**: Masud Chaichian,Hugo Perez Rojas,Anca Tureanu

**Publisher:** Springer Science & Business Media

**ISBN:** 3642195989

**Category:** Science

**Page:** 377

**View:** 6109

"Basic Concepts in Physics: From the Cosmos to Quarks" is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book’s fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear. The book is addressed to undergraduate and graduate students in physics and will also be appreciated by many professional physicists. It will likewise be of interest to students, researchers and teachers of other natural sciences, as well as to engineers, high-school teachers and the curious general reader, who will come to understand what physics is about and how it describes the different phenomena of Nature. Not only will readers of this book learn much about physics, they will also learn to love it.
*42 Problems with Solutions*

**Author**: David Gury-Odelin,Thierry Lahaye

**Publisher:** World Scientific

**ISBN:** 1848164793

**Category:** Science

**Page:** 251

**View:** 6403

In many fields of modern physics, classical mechanics plays a key role. This book provides an illustration of classical mechanics in the form of problems (at the bachelor level) inspired - for most of them - by contemporary research in physics, and resulting from the teaching and research experience of the authors.
*An Introductory Guide to the Mechanics of the Universe*

**Author**: Douglas W. MacDougal

**Publisher:** Springer Science & Business Media

**ISBN:** 1461454441

**Category:** Science

**Page:** 433

**View:** 2148

“Newton’s Gravity” conveys the power of simple mathematics to tell the fundamental truth about nature. Many people, for example, know the tides are caused by the pull of the Moon and to a lesser extent the Sun. But very few can explain exactly how and why that happens. Fewer still can calculate the actual pulls of the Moon and Sun on the oceans. This book shows in clear detail how to do this with simple tools. It uniquely crosses disciplines – history, astronomy, physics and mathematics – and takes pains to explain things frequently passed over or taken for granted in other books. Using a problem-based approach, “Newton’s Gravity” explores the surprisingly basic mathematics behind gravity, the most fundamental force that governs the movements of satellites, planets, and the stars. Author Douglas W. MacDougal uses actual problems from the history of astronomy, as well as original examples, to deepen understanding of how discoveries were made and what they mean. “Newton’s Gravity” concentrates strongly on the development of the science of orbital motion, beginning with Galileo, Kepler, and Newton, each of whom is prominently represented. Quotes and problems from Galileo’s Dialogs Concerning Two New Sciences and particularly Newton’s Principia help the reader get inside the mind of those thinkers and see the problems as they saw them, and experience their concise and typically eloquent writing. This book enables students and curious minds to explore the mysteries of celestial motion without having to know advanced mathematics. It will whet the reader’s curiosity to explore further and provide him or her the tools (mathematical or physical) to do so.

**Author**: Jakob Schwichtenberg

**Publisher:** Springer

**ISBN:** 3319666312

**Category:** Science

**Page:** 287

**View:** 7991

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.

**Author**: Alessandro Bettini

**Publisher:** Springer

**ISBN:** 3319292579

**Category:** Science

**Page:** 388

**View:** 4340

This first volume covers the mechanics of point particles, gravitation, extended systems (starting from the two-body system), the basic concepts of relativistic mechanics and the mechanics of rigid bodies and fluids. It is part of a four-volume textbook, which covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, and is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Writings by the founders of classical mechanics, G. Galilei and I. Newton, are reproduced, encouraging students to consult them. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in modern physics are included. Each chapter begins with an introduction that briefly describes the subjects to be discussed and ends with a summary of the main results. A number of “Questions” are included to help readers check their level of understanding. The textbook offers an ideal resource for physics students, lecturers and, last but not least, all those seeking a deeper understanding of the experimental basics of physics.

**Author**: Richard P. Feynman

**Publisher:** CRC Press

**ISBN:** 0429980078

**Category:** Science

**Page:** 324

**View:** 8936

When, in 1984?86, Richard P. Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a ?Feynmanesque? overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.
*The New Millennium Edition: Mainly Mechanics, Radiation, and Heat*

**Author**: Richard P. Feynman,Robert B. Leighton,Matthew Sands

**Publisher:** Basic Books

**ISBN:** 0465040853

**Category:** Science

**Page:** 1200

**View:** 1473

“The whole thing was basically an experiment,” Richard Feynman said late in his career, looking back on the origins of his lectures. The experiment turned out to be hugely successful, spawning publications that have remained definitive and introductory to physics for decades. Ranging from the basic principles of Newtonian physics through such formidable theories as general relativity and quantum mechanics, Feynman's lectures stand as a monument of clear exposition and deep insight. Timeless and collectible, the lectures are essential reading, not just for students of physics but for anyone seeking an introduction to the field from the inimitable Feynman.

**Author**: Kenneth R. Lang

**Publisher:** Springer Science & Business Media

**ISBN:** 3642359639

**Category:** Science

**Page:** 635

**View:** 9359

Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialised courses in the future. Astronomical examples are provided throughout the text, to reinforce the basic concepts and physics, and to demonstrate the use of the relevant formulae. In this way, the student learns to apply the fundamental equations and principles to cosmic objects and situations. Astronomical and physical constants and units as well as the most fundamental equations can be found in the appendix. Essential Astrophysics goes beyond the typical textbook by including references to the seminal papers in the field, with further reference to recent applications, results, or specialised literature.

**Author**: Oliver Bühler

**Publisher:** American Mathematical Soc.

**ISBN:** 0821842323

**Category:** Mathematics

**Page:** 153

**View:** 1380

This book provides a rapid overview of the basic methods and concepts in mechanics for beginning Ph.D. students and advanced undergraduates in applied mathematics or related fields. It is based on a graduate course given in 2006-07 at the Courant Institute of Mathematical Sciences. Among other topics, the book introduces Newton's law, action principles, Hamilton-Jacobi theory, geometric wave theory, analytical and numerical statistical mechanics, discrete and continuous quantum mechanics, and quantum path-integral methods. The focus is on fundamental mathematical methods that provide connections between seemingly unrelated subjects. An example is Hamilton-Jacobi theory, which appears in the calculus of variations, in Fermat's principle of classical mechanics, and in the geometric theory of dispersive wavetrains. The material is developed in a sequence of simple examples and the book can be used in a one-semester class on classical, statistical, and quantum mechanics. Some familiarity with differential equations is required but otherwise the book is self-contained. In particular, no previous knowledge of physics is assumed. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

**Author**: Alessandro Bettini

**Publisher:** Springer

**ISBN:** 3319408712

**Category:** Science

**Page:** 403

**View:** 8728

Focusing on electromagnetism, this third volume of a four-volume textbook covers the electric field under static conditions, constant electric currents and their laws, the magnetic field in a vacuum, electromagnetic induction, magnetic energy under static conditions, the magnetic properties of matter, and the unified description of electromagnetic phenomena provided by Maxwell’s equations. The four-volume textbook as a whole covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, and is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in quantum mechanics and atomic, solid state, nuclear, and particle physics are included. The textbook offers an ideal resource for physics students, lecturers and, last but not least, all those seeking a deeper understanding of the experimental basics of physics.
*A Modern Course Combining Analytical and Numerical Techniques*

**Author**: Anders Malthe-Sorenssen

**Publisher:** Springer

**ISBN:** 3319195964

**Category:** Science

**Page:** 590

**View:** 6875

This book – specifically developed as a novel textbook on elementary classical mechanics – shows how analytical and numerical methods can be seamlessly integrated to solve physics problems. This approach allows students to solve more advanced and applied problems at an earlier stage and equips them to deal with real-world examples well beyond the typical special cases treated in standard textbooks. Another advantage of this approach is that students are brought closer to the way physics is actually discovered and applied, as they are introduced right from the start to a more exploratory way of understanding phenomena and of developing their physical concepts. While not a requirement, it is advantageous for the reader to have some prior knowledge of scientific programming with a scripting-type language. This edition of the book uses Python, and a chapter devoted to the basics of scientific programming with Python is included. A parallel edition using Matlab instead of Python is also available. Last but not least, each chapter is accompanied by an extensive set of course-tested exercises and solutions.

**Author**: Gordon Baym

**Publisher:** CRC Press

**ISBN:** 0429967810

**Category:** Science

**Page:** 608

**View:** 4521

These lecture notes comprise a three-semester graduate course in quantum mechanics at the University of Illinois. There are a number of texts which present the basic topics very well; but since a fair quantity of the material discussed in my course was not available to the students in elementary quantum mechanics books, I was asked to prepare written notes. In retrospect these lecture notes seemed sufficiently interesting to warrant their publication in this format. The notes, presented here in slightly revised form, consitutute a self-contained course in quantum mechanics from first principles to elementary and relativistic one-particle mechanics. Prerequisite to reading these notes is some familiarity with elementary quantum mechanics, at least at the undergraduate level. Preferably the reader should already have met the uncertainty principle and the concept of a wave function. Prerequisites also include sufficient acquaintance with complex cariables to be able to do simple contour integrals and to understand words such as "poles" and "branch cuts." An elementary knowledge of Fourier transforms and series is necessary. I also assume an awareness of classical electrodynamics.
*A Modern Course Combining Analytical and Numerical Techniques*

**Author**: Anders Malthe-Sorenssen

**Publisher:** Springer

**ISBN:** 3319195875

**Category:** Science

**Page:** 590

**View:** 1275

This book – specifically developed as a novel textbook on elementary classical mechanics – shows how analytical and numerical methods can be seamlessly integrated to solve physics problems. This approach allows students to solve more advanced and applied problems at an earlier stage and equips them to deal with real-world examples well beyond the typical special cases treated in standard textbooks. Another advantage of this approach is that students are brought closer to the way physics is actually discovered and applied, as they are introduced right from the start to a more exploratory way of understanding phenomena and of developing their physical concepts. While not a requirement, it is advantageous for the reader to have some prior knowledge of scientific programming with a scripting-type language. This edition of the book uses Matlab, and a chapter devoted to the basics of scientific programming with Matlab is included. A parallel edition using Python instead of Matlab is also available. Last but not least, each chapter is accompanied by an extensive set of course-tested exercises and solutions.
*From Newton's Laws to Deterministic Chaos*

**Author**: Florian Scheck

**Publisher:** Springer Science & Business Media

**ISBN:** 364205370X

**Category:** Science

**Page:** 547

**View:** 7105

Purpose and Emphasis. Mechanics not only is the oldest branch of physics but was and still is the basis for all of theoretical physics. Quantum mechanics can hardly be understood, perhaps cannot even be formulated, without a good kno- edge of general mechanics. Field theories such as electrodynamics borrow their formal framework and many of their building principles from mechanics. In short, throughout the many modern developments of physics where one frequently turns back to the principles of classical mechanics its model character is felt. For this reason it is not surprising that the presentation of mechanics re?ects to some - tent the development of modern physics and that today this classical branch of theoretical physics is taught rather differently than at the time of Arnold S- merfeld, in the 1920s, or even in the 1950s, when more emphasis was put on the theoryandtheapplicationsofpartial-differentialequations. Today, symmetriesand invariance principles, the structure of the space–time continuum, and the geom- rical structure of mechanics play an important role. The beginner should realize that mechanics is not primarily the art of describing block-and-tackles, collisions of billiard balls, constrained motions of the cylinder in a washing machine, or - cycle riding.
*An Introduction Based on Photons*

**Author**: A.I Lvovsky

**Publisher:** Springer

**ISBN:** 3662565846

**Category:** Science

**Page:** 303

**View:** 6082

This textbook is intended to accompany a two-semester course on quantum mechanics for physics students. Along with the traditional material covered in such a course (states, operators, Schrödinger equation, hydrogen atom), it offers in-depth discussion of the Hilbert space, the nature of measurement, entanglement, and decoherence – concepts that are crucial for the understanding of quantum physics and its relation to the macroscopic world, but rarely covered in entry-level textbooks. The book uses a mathematically simple physical system – photon polarization – as the visualization tool, permitting the student to see the entangled beauty of the quantum world from the very first pages. The formal concepts of quantum physics are illustrated by examples from the forefront of modern quantum research, such as quantum communication, teleportation and nonlocality. The author adopts a Socratic pedagogy: The student is guided to develop the machinery of quantum physics independently by solving sets of carefully chosen problems. Detailed solutions are provided.

**Author**: Louis N. Hand,Janet D. Finch

**Publisher:** Cambridge University Press

**ISBN:** 1139643312

**Category:** Science

**Page:** N.A

**View:** 4694

Analytical Mechanics, first published in 1999, provides a detailed introduction to the key analytical techniques of classical mechanics, one of the cornerstones of physics. It deals with all the important subjects encountered in an undergraduate course and prepares the reader thoroughly for further study at graduate level. The authors set out the fundamentals of Lagrangian and Hamiltonian mechanics early on in the book and go on to cover such topics as linear oscillators, planetary orbits, rigid-body motion, small vibrations, nonlinear dynamics, chaos, and special relativity. A special feature is the inclusion of many 'e-mail questions', which are intended to facilitate dialogue between the student and instructor. Many worked examples are given, and there are 250 homework exercises to help students gain confidence and proficiency in problem-solving. It is an ideal textbook for undergraduate courses in classical mechanics, and provides a sound foundation for graduate study.
*The Theoretical Minimum*

**Author**: Leonard Susskind,Art Friedman

**Publisher:** Basic Books

**ISBN:** 0465036678

**Category:** Science

**Page:** 384

**View:** 2617

From the bestselling author of The Theoretical Minimum, a DIY introduction to the math and science of quantum physics First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics. In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course. An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.

**Author**: Valerio Faraoni

**Publisher:** Springer Science & Business Media

**ISBN:** 3319011073

**Category:** Science

**Page:** 304

**View:** 8690

This book offers an essential bridge between college-level introductions and advanced graduate-level books on special relativity. It begins at an elementary level, presenting and discussing the basic concepts normally covered in college-level works, including the Lorentz transformation. Subsequent chapters introduce the four-dimensional worldview implied by the Lorentz transformations, mixing time and space coordinates, before continuing on to the formalism of tensors, a topic usually avoided in lower-level courses. The book’s second half addresses a number of essential points, including the concept of causality; the equivalence between mass and energy, including applications; relativistic optics; and measurements and matter in Minkowski space-time. The closing chapters focus on the energy-momentum tensor of a continuous distribution of mass-energy and its co-variant conservation; angular momentum; a discussion of the scalar field of perfect fluids and the Maxwell field; and general coordinates. Every chapter is supplemented by a section with numerous exercises, allowing readers to practice the theory. These exercises constitute an essential part of the textbook, and the solutions to approximately half of them are provided in the appendix.
*MIT 8.01 Course Notes*

**Author**: Peter Dourmashkin

**Publisher:** N.A

**ISBN:** 9781118952801

**Category:** Mechanics, Analytic

**Page:** N.A

**View:** 2595

Full PDF Download Free

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy