**Author**: Roxy Peck,Chris Olsen,Jay L. Devore

**Publisher:**Cengage Learning

**ISBN:**1305445961

**Category:**Mathematics

**Page:**844

**View:**4519

Skip to content
# Search Results for: introduction-to-statistics-and-data-analysis

**Author**: Roxy Peck,Chris Olsen,Jay L. Devore

**Publisher:** Cengage Learning

**ISBN:** 1305445961

**Category:** Mathematics

**Page:** 844

**View:** 4519

Roxy Peck, Chris Olsen, and Jay Devore's new edition uses real data and attention-grabbing examples to introduce students to the study of statistics and data analysis. Traditional in structure yet modern in approach, this text guides students through an intuition-based learning process that stresses interpretation and communication of statistical information. Simple notation--including frequent substitution of words for symbols--helps students grasp concepts and cement their comprehension. Hands-on activities and interactive applets allow students to practice statistics firsthand. INTRODUCTION TO STATISTICS AND DATA ANALYSIS includes updated coverage of most major technologies, as well as expanded coverage of probability. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

**Author**: Roxy Peck,Chris Olsen,Jay L. Devore

**Publisher:** Cengage Learning

**ISBN:** 1111802041

**Category:** Mathematics

**Page:** 888

**View:** 9594

Roxy Peck, Chris Olsen and Jay Devore's new edition uses real data and attention-grabbing examples to introduce students to the study of statistics and data analysis. The Third Edition includes coverage of the graphing calculator and includes expanded coverage of probability. Traditional in structure yet modern in approach, this text guides students through an intuition-based learning process that stresses interpretation and communication of statistical information. It helps students grasp concepts and cement their comprehension by using simple notation-frequently substituting words for symbols. Hands-on activities and interactive applets allow students to practice statistics firsthand. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

**Author**: Roxy Peck,Chris Olsen,Jay Devore

**Publisher:** Cengage Learning

**ISBN:** 0495118737

**Category:** Mathematics

**Page:** 888

**View:** 8522

Roxy Peck, Chris Olsen and Jay Devore’s new edition uses real data and attention-grabbing examples to introduce students to the study of statistics and data analysis. The Third Edition includes coverage of the graphing calculator and includes expanded coverage of probability. Traditional in structure yet modern in approach, this text guides students through an intuition-based learning process that stresses interpretation and communication of statistical information. It helps students grasp concepts and cement their comprehension by using simple notation-frequently substituting words for symbols. Hands-on activities and interactive applets allow students to practice statistics firsthand. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
*With Exercises, Solutions and Applications in R*

**Author**: Christian Heumann,Michael Schomaker,Shalabh

**Publisher:** Springer

**ISBN:** 3319461621

**Category:** Mathematics

**Page:** 456

**View:** 1140

This introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. In the experimental sciences and interdisciplinary research, data analysis has become an integral part of any scientific study. Issues such as judging the credibility of data, analyzing the data, evaluating the reliability of the obtained results and finally drawing the correct and appropriate conclusions from the results are vital. The text is primarily intended for undergraduate students in disciplines like business administration, the social sciences, medicine, politics, macroeconomics, etc. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R as well as supplementary material that will enable the reader to quickly adapt all methods to their own applications.
*For the Behavioral Sciences*

**Author**: Robert S. Lockhart

**Publisher:** Macmillan

**ISBN:** 9780716729747

**Category:** Psychology

**Page:** 651

**View:** 1114

In Introduction to Statistics and Data Analysis, Bob Lockhart emphasizes the link between statistical techniques and scientific discovery by focusing on evaluation and comparison of models. It is an intuitive view of statistics that views all methods as variants on a basic theme (evaluating models). Lockhart's realistic approach enables students to examine and question the methods and goals of statistics and to draw clear connections between statistical methods and the research process.

**Author**: Roxy Peck,Chris Olsen,Jay Devore

**Publisher:** Cengage Learning

**ISBN:** 0840054904

**Category:** Mathematics

**Page:** 944

**View:** 9437

Roxy Peck, Chris Olsen, and Jay Devore’s new edition uses real data and attention-grabbing examples to introduce students to the study of statistics and data analysis. Traditional in structure yet modern in approach, this text guides students through an intuition-based learning process that stresses interpretation and communication of statistical information. Simple notation--including the frequent substitution of words for symbols--helps students grasp concepts and cement their comprehension. Hands-on activities and interactive applets allow students to practice statistics firsthand. INTRODUCTION TO STATISTICS AND DATA ANALYSIS, 4th Edition, includes updated coverage of the graphing calculator as well as expanded coverage of probability. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

**Author**: R. Lyman Ott,Micheal T. Longnecker

**Publisher:** Cengage Learning

**ISBN:** 1305465520

**Category:** Mathematics

**Page:** 1296

**View:** 2158

Ott and Longnecker's AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Seventh Edition, provides a broad overview of statistical methods for advanced undergraduate and graduate students from a variety of disciplines who have little or no prior course work in statistics. The authors teach students to solve problems encountered in research projects, to make decisions based on data in general settings both within and beyond the university setting, and to become critical readers of statistical analyses in research papers and news reports. The first eleven chapters present material typically covered in an introductory statistics course, as well as case studies and examples that are often encountered in undergraduate capstone courses. The remaining chapters cover regression modeling and design of experiments. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
*Fundamental Concepts and Procedures of Data Analysis*

**Author**: Howard M. Reid

**Publisher:** SAGE Publications

**ISBN:** 1483324281

**Category:** Social Science

**Page:** 632

**View:** 9041

Using a truly accessible and reader-friendly approach, Introduction to Statistics: Fundamental Concepts and Procedures of Data Analysis, by Howard M. Reid, redefines the way statistics can be taught and learned. Unlike other books that merely focus on procedures, Reid’s approach balances development of critical thinking skills with application of those skills to contemporary statistical analysis. He goes beyond simply presenting techniques by focusing on the key concepts readers need to master in order to ensure their long-term success. Indeed, this exciting new book offers the perfect foundation upon which readers can build as their studies and careers progress to more advanced forms of statistics. Keeping computational challenges to a minimum, Reid shows readers not only how to conduct a variety of commonly used statistical procedures, but also when each procedure should be utilized and how they are related. Following a review of descriptive statistics, he begins his discussion of inferential statistics with a two-chapter examination of the Chi Square test to introduce students to hypothesis testing, the importance of determining effect size, and the need for post hoc tests. When more complex procedures related to interval/ratio data are covered, students already have a solid understanding of the foundational concepts involved. Exploring challenging topics in an engaging and easy-to-follow manner, Reid builds concepts logically and supports learning through robust pedagogical tools, the use of SPSS, numerous examples, historical quotations, insightful questions, and helpful progress checks.

**Author**: R. Ott,Micheal Longnecker

**Publisher:** Nelson Education

**ISBN:** 1111779988

**Category:** Mathematics

**Page:** 1296

**View:** 9670

Ott and Longnecker’s AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Sixth Edition, provides a broad overview of statistical methods for advanced undergraduate and graduate students from a variety of disciplines who have little or no prior course work in statistics. The authors teach students to solve problems encountered in research projects, to make decisions based on data in general settings both within and beyond the university setting, and to become critical readers of statistical analyses in research papers and in news reports. The first eleven chapters present material typically covered in an introductory statistics course, as well as case studies and examples that are often encountered in undergraduate capstone courses. The remaining chapters cover regression modeling and design of experiments. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

**Author**: Claus Thorn Ekstrom,Helle Sørensen

**Publisher:** CRC Press

**ISBN:** 1482238934

**Category:** Mathematics

**Page:** 526

**View:** 7246

A Hands-On Approach to Teaching Introductory Statistics Expanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the mathematics underlying classical statistical analysis, the modeling aspects of statistical analysis and the biological interpretation of results, and the application of statistical software in analyzing real-world problems and datasets. New to the Second Edition A new chapter on non-linear regression models A new chapter that contains examples of complete data analyses, illustrating how a full-fledged statistical analysis is undertaken Additional exercises in most chapters A summary of statistical formulas related to the specific designs used to teach the statistical concepts This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.
*With Applications in the Life Sciences*

**Author**: Thomas Haslwanter

**Publisher:** Springer

**ISBN:** 3319283162

**Category:** Computers

**Page:** 278

**View:** 3400

This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis.

**Author**: Luis Tenorio

**Publisher:** SIAM

**ISBN:** 1611974917

**Category:** Mathematics

**Page:** 269

**View:** 6356

Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems÷includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.

**Author**: Gareth Hagger-Johnson

**Publisher:** Routledge

**ISBN:** 1317674413

**Category:** Medical

**Page:** 328

**View:** 3569

Whilst the ‘health sciences’ are a broad and diverse area, and includes public health, primary care, health psychology, psychiatry and epidemiology, the research methods and data analysis skills required to analyse them are very similar. Moreover, the ability to appraise and conduct research is emphasised within the health sciences – and students are expected increasingly to do both. Introduction to Research Methods and Data Analysis in the Health Sciences presents a balanced blend of quantitative research methods, and the most widely used techniques for collecting and analysing data in the health sciences. Highly practical in nature, the book guides you, step-by-step, through the research process, and covers both the consumption and the production of research and data analysis. Divided into the three strands that run throughout quantitative health science research – critical numbers, critical appraisal of existing research, and conducting new research – this accessible textbook introduces: Descriptive statistics Measures of association for categorical and continuous outcomes Confounding, effect modification, mediation and causal inference Critical appraisal Searching the literature Randomised controlled trials Cohort studies Case-control studies Research ethics and data management Dissemination and publication Linear regression for continuous outcomes Logistic regression for categorical outcomes. A dedicated companion website offers additional teaching and learning resources for students and lecturers, including screenshots, R programming code, and extensive self-assessment material linked to the book’s exercises and activities. Clear and accessible with a comprehensive coverage to equip the reader with an understanding of the research process and the practical skills they need to collect and analyse data, it is essential reading for all undergraduate and postgraduate students in the health and medical sciences.
*Statistics in the Large*

**Author**: Thomas W. MacFarland

**Publisher:** Springer Science & Business Media

**ISBN:** 3319025325

**Category:** Medical

**Page:** 167

**View:** 1598

Through real-world datasets, this book shows the reader how to work with material in biostatistics using the open source software R. These include tools that are critical to dealing with missing data, which is a pressing scientific issue for those engaged in biostatistics. Readers will be equipped to run analyses and make graphical presentations based on the sample dataset and their own data. The hands-on approach will benefit students and ensure the accessibility of this book for readers with a basic understanding of R. Topics include: an introduction to Biostatistics and R, data exploration, descriptive statistics and measures of central tendency, t-Test for independent samples, t-Test for matched pairs, ANOVA, correlation and linear regression, and advice for future work.

**Author**: Allen B. Downey

**Publisher:** "O'Reilly Media, Inc."

**ISBN:** 1491907371

**Category:** Computers

**Page:** 226

**View:** 5845

If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. By working with a single case study throughout this thoroughly revised book, you’ll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You’ll explore distributions, rules of probability, visualization, and many other tools and concepts. New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries. Develop an understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Import data from most sources with Python, rather than rely on data that’s cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data

**Author**: John MacInnes

**Publisher:** SAGE

**ISBN:** 1473987717

**Category:** Social Science

**Page:** 336

**View:** 8070

Many professional, high-quality surveys collect data on people's behaviour, experiences, lifestyles and attitudes. The data they produce is more accessible than ever before. This book provides students with a comprehensive introduction to using this data, as well as transactional data and big data sources, in their own research projects. Here you will find all you need to know about locating, accessing, preparing and analysing secondary data, along with step-by-step instructions for using IBM SPSS Statistics. You will learn how to: Create a robust research question and design that suits secondary analysis Locate, access and explore data online Understand data documentation Check and 'clean' secondary data Manage and analyse your data to produce meaningful results Replicate analyses of data in published articles and books Using case studies and video animations to illustrate each step of your research, this book provides you with the quantitative analysis skills you'll need to pass your course, complete your research project and compete in the job market. Exercises throughout the book and on the book's companion website give you an opportunity to practice, check your understanding and work hands on with real data as you're learning.

**Author**: Peter Dalgaard

**Publisher:** Springer Science & Business Media

**ISBN:** 0387790543

**Category:** Mathematics

**Page:** 364

**View:** 9612

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.

**Author**: Roxy Peck,Chris Olsen,Jay Devore

**Publisher:** Cengage Learning

**ISBN:** 9781439047491

**Category:** Mathematics

**Page:** 896

**View:** 5572

Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

**Author**: Michael Longnecker,R. Lyman Ott

**Publisher:** Duxbury Press

**ISBN:** 9780534371234

**Category:** Mathematics

**Page:** 201

**View:** 3721

Provides worked-out solutions to odd-numbered exercises.

**Author**: João Moreira,Andre Carvalho,TomÃ¡s Horvath

**Publisher:** John Wiley & Sons

**ISBN:** 1119296250

**Category:** Mathematics

**Page:** 352

**View:** 6056

A guide to the principles and methods of data analysis that does not require knowledge of statistics or programming A General Introduction to Data Analytics is an essential guide to understand and use data analytics. This book is written using easy-to-understand terms and does not require familiarity with statistics or programming. The authors—noted experts in the field—highlight an explanation of the intuition behind the basic data analytics techniques. The text also contains exercises and illustrative examples. Thought to be easily accessible to non-experts, the book provides motivation to the necessity of analyzing data. It explains how to visualize and summarize data, and how to find natural groups and frequent patterns in a dataset. The book also explores predictive tasks, be them classification or regression. Finally, the book discusses popular data analytic applications, like mining the web, information retrieval, social network analysis, working with text, and recommender systems. The learning resources offer: A guide to the reasoning behind data mining techniques A unique illustrative example that extends throughout all the chapters Exercises at the end of each chapter and larger projects at the end of each of the text’s two main parts Together with these learning resources, the book can be used in a 13-week course guide, one chapter per course topic. The book was written in a format that allows the understanding of the main data analytics concepts by non-mathematicians, non-statisticians and non-computer scientists interested in getting an introduction to data science. A General Introduction to Data Analytics is a basic guide to data analytics written in highly accessible terms.

Full PDF Download Free

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy