*Extended Edition*

**Author**: MichaÅ Walicki

**Publisher:**World Scientific Publishing Company

**ISBN:**9814719986

**Category:**Mathematics

**Page:**304

**View:**8375

Skip to content
# Search Results for: introduction-to-mathematical-logic-extended-edition

*Extended Edition*

**Author**: MichaÅ Walicki

**Publisher:** World Scientific Publishing Company

**ISBN:** 9814719986

**Category:** Mathematics

**Page:** 304

**View:** 8375

This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students. Starting with the basics of set theory, induction and computability, it covers propositional and first order logic — their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts. Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules — of a high, though often neglected, pedagogical value — aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers. An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic. This revised edition contains also, besides many new exercises, a new chapter on semantic paradoxes. An equivalence of logical and graphical representations allows us to see vicious circularity as the odd cycles in the graphical representation and can be used as a simple tool for diagnosing paradoxes in natural discourse.

**Author**: Elliott Mendelson

**Publisher:** CRC Press

**ISBN:** 9780412808302

**Category:** Mathematics

**Page:** 440

**View:** 4138

The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic. This edition includes an extensive appendix on second-order logic, a section on set theory with urlements, and a section on the logic that results when we allow models with empty domains. The text contains numerous exercises and an appendix furnishes answers to many of them. Introduction to Mathematical Logic includes: propositional logic first-order logic first-order number theory and the incompleteness and undecidability theorems of Gödel, Rosser, Church, and Tarski axiomatic set theory theory of computability The study of mathematical logic, axiomatic set theory, and computability theory provides an understanding of the fundamental assumptions and proof techniques that form basis of mathematics. Logic and computability theory have also become indispensable tools in theoretical computer science, including artificial intelligence. Introduction to Mathematical Logic covers these topics in a clear, reader-friendly style that will be valued by anyone working in computer science as well as lecturers and researchers in mathematics, philosophy, and related fields.

**Author**: Herbert Enderton,Herbert B. Enderton

**Publisher:** Elsevier

**ISBN:** 0080496466

**Category:** Mathematics

**Page:** 317

**View:** 4018

A Mathematical Introduction to Logic, Second Edition, offers increased flexibility with topic coverage, allowing for choice in how to utilize the textbook in a course. The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets. * Increased flexibility of the text, allowing instructors more choice in how they use the textbook in courses. * Reduced mathematical rigour to fit the needs of undergraduate students

**Author**: Alonzo Church,Clifford Truesdell

**Publisher:** N.A

**ISBN:** N.A

**Category:** Mathematics

**Page:** N.A

**View:** 5538

**Author**: Elliott Mendelson

**Publisher:** CRC Press

**ISBN:** 1482237784

**Category:** Mathematics

**Page:** 513

**View:** 3312

The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing. The sixth edition incorporates recent work on Gödel’s second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in the new edition for historical considerations. The text also offers historical perspectives and many new exercises of varying difficulty, which motivate and lead students to an in-depth, practical understanding of the material.

**Author**: Rudolf Carnap

**Publisher:** Courier Corporation

**ISBN:** 048614349X

**Category:** Mathematics

**Page:** 272

**View:** 549

Clear, comprehensive, and rigorous treatment develops the subject from elementary concepts to the construction and analysis of relatively complex logical languages. Hundreds of problems, examples, and exercises. 1958 edition.

**Author**: Keith J. Devlin

**Publisher:** N.A

**ISBN:** 9780615653631

**Category:** Mathematics

**Page:** 92

**View:** 8055

In the twenty-first century, everyone can benefit from being able to think mathematically. This is not the same as "doing math." The latter usually involves the application of formulas, procedures, and symbolic manipulations; mathematical thinking is a powerful way of thinking about things in the world -- logically, analytically, quantitatively, and with precision. It is not a natural way of thinking, but it can be learned.Mathematicians, scientists, and engineers need to "do math," and it takes many years of college-level education to learn all that is required. Mathematical thinking is valuable to everyone, and can be mastered in about six weeks by anyone who has completed high school mathematics. Mathematical thinking does not have to be about mathematics at all, but parts of mathematics provide the ideal target domain to learn how to think that way, and that is the approach taken by this short but valuable book.The book is written primarily for first and second year students of science, technology, engineering, and mathematics (STEM) at colleges and universities, and for high school students intending to study a STEM subject at university. Many students encounter difficulty going from high school math to college-level mathematics. Even if they did well at math in school, most are knocked off course for a while by the shift in emphasis, from the K-12 focus on mastering procedures to the "mathematical thinking" characteristic of much university mathematics. Though the majority survive the transition, many do not. To help them make the shift, colleges and universities often have a "transition course." This book could serve as a textbook or a supplementary source for such a course.Because of the widespread applicability of mathematical thinking, however, the book has been kept short and written in an engaging style, to make it accessible to anyone who seeks to extend and improve their analytic thinking skills. Going beyond a basic grasp of analytic thinking that everyone can benefit from, the STEM student who truly masters mathematical thinking will find that college-level mathematics goes from being confusing, frustrating, and at times seemingly impossible, to making sense and being hard but doable.Dr. Keith Devlin is a professional mathematician at Stanford University and the author of 31 previous books and over 80 research papers. His books have earned him many awards, including the Pythagoras Prize, the Carl Sagan Award, and the Joint Policy Board for Mathematics Communications Award. He is known to millions of NPR listeners as "the Math Guy" on Weekend Edition with Scott Simon. He writes a popular monthly blog "Devlin's Angle" for the Mathematical Association of America, another blog under the name "profkeithdevlin", and also blogs on various topics for the Huffington Post.

**Author**: Alonzo Church

**Publisher:** Princeton University Press

**ISBN:** 9780691029061

**Category:** Mathematics

**Page:** 378

**View:** 9598

Logic is sometimes called the foundation of mathematics: the logician studies the kinds of reasoning used in the individual steps of a proof. Alonzo Church was a pioneer in the field of mathematical logic, whose contributions to number theory and the theories of algorithms and computability laid the theoretical foundations of computer science. His first Princeton book, The Calculi of Lambda-Conversion (1941), established an invaluable tool that computer scientists still use today. Even beyond the accomplishment of that book, however, his second Princeton book, Introduction to Mathematical Logic, defined its subject for a generation. Originally published in Princeton's Annals of Mathematics Studies series, this book was revised in 1956 and reprinted a third time, in 1996, in the Princeton Landmarks in Mathematics series. Although new results in mathematical logic have been developed and other textbooks have been published, it remains, sixty years later, a basic source for understanding formal logic. Church was one of the principal founders of the Association for Symbolic Logic; he founded the Journal of Symbolic Logic in 1936 and remained an editor until 1979 At his death in 1995, Church was still regarded as the greatest mathematical logician in the world.
*Principles and Applications (with Companion Media Pack)Fourth Edition of Rapid Prototyping Fourth Edition*

**Author**: Raymond Smullyan

**Publisher:** World Scientific Publishing Company

**ISBN:** 9814733016

**Category:**

**Page:** 288

**View:** 9954

This is the final book written by the late great puzzle master and logician, Dr. Raymond Smullyan. This book is a sequel to my Beginner's Guide to Mathematical Logic. The previous volume deals with elements of propositional and first-order logic, contains a bit on formal systems and recursion, and concludes with chapters on Gödel's famous incompleteness theorem, along with related results. The present volume begins with a bit more on propositional and first-order logic, followed by what I would call a "fein" chapter, which simultaneously generalizes some results from recursion theory, first-order arithmetic systems, and what I dub a "decision machine." Then come five chapters on formal systems, recursion theory and metamathematical applications in a general setting. The concluding five chapters are on the beautiful subject of combinatory logic, which is not only intriguing in its own right, but has important applications to computer science. Argonne National Laboratory is especially involved in these applications, and I am proud to say that its members have found use for some of my results in combinatory logic. This book does not cover such important subjects as set theory, model theory, proof theory, and modern developments in recursion theory, but the reader, after studying this volume, will be amply prepared for the study of these more advanced topics. Request Inspection Copy

**Author**: Hans Hermes

**Publisher:** Springer Science & Business Media

**ISBN:** 3642871321

**Category:** Mathematics

**Page:** 244

**View:** 3474

This book grew out of lectures. It is intended as an introduction to classical two-valued predicate logic. The restriction to classical logic is not meant to imply that this logic is intrinsically better than other, non-classical logics; however, classical logic is a good introduction to logic because of its simplicity, and a good basis for applications because it is the foundation of classical mathematics, and thus of the exact sciences which are based on it. The book is meant primarily for mathematics students who are already acquainted with some of the fundamental concepts of mathematics, such as that of a group. It should help the reader to see for himself the advantages of a formalisation. The step from the everyday language to a formalised language, which usually creates difficulties, is dis cussed and practised thoroughly. The analysis of the way in which basic mathematical structures are approached in mathematics leads in a natural way to the semantic notion of consequence. One of the substantial achievements of modern logic has been to show that the notion of consequence can be replaced by a provably equivalent notion of derivability which is defined by means of a calculus. Today we know of many calculi which have this property.

**Author**: Richard E. Hodel

**Publisher:** Courier Corporation

**ISBN:** 0486497852

**Category:** Mathematics

**Page:** 491

**View:** 1616

This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.

**Author**: Alfred North Whitehead,Bertrand Russell

**Publisher:** N.A

**ISBN:** N.A

**Category:** Logic, Symbolic and mathematical

**Page:** N.A

**View:** 2021

**Author**: Wolfgang Rautenberg

**Publisher:** Springer

**ISBN:** 9781441912213

**Category:** Mathematics

**Page:** 320

**View:** 4655

Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.

**Author**: Bertrand Russell

**Publisher:** Spokesman Books

**ISBN:** 0851247385

**Category:** Mathematics

**Page:** 208

**View:** 8227

Bertrand Russell is probably the most important philosopher of mathematics in the 20th century. He brought together his formidable knowledge of the subject and skills as a gifted communicator to provide a classic introduction to the philosophy of mathematics.

**Author**: David Bostock

**Publisher:** Clarendon Press

**ISBN:** 9780191567070

**Category:** Philosophy

**Page:** 404

**View:** 7148

Intermediate Logic fills a serious gap in the range of university logic texts by offering a clear, reliable, general guide for students taking a second course in logic after completing a basic introduction. It will serve as an ideal follow-up to any of the standard introductory texts, and will give excellent preparation for advanced work in logical theory or applications of logic in philosophy, mathematics, or computing theory. - ;Intermediate Logic is an ideal text for anyone who has taken a first course in logic and is progressing to further study. It examines logical theory, rather than the applications of logic, and does not assume any specific technological grounding. The author introduces and explains each concept and term, ensuring that readers have a firm foundation for study. He provides a broad, deep understanding of logic by adopting and comparing a variety of different methods and approaches. In the first section, Bostock covers such fundamental notions as truth, validity, entailment, quantification, and decision procedures. Part two lays out a definitive introduction to four key logical tools or procedures: semantic tableaux, axiomatic proofs, natural deduction, and sequent calculi. The final section opens up new areas of existence and identity, concluding by moving from orthodox logic to examination of `free logic'. Intermediate Logic provides an ideal secondary course in logic for university students, and a bridge to advanced study of such subjects as model theory, proof theory, and other specialized areas of mathematical logic. -

**Author**: R.O. Gandy,C.E.M. Yates

**Publisher:** Elsevier

**ISBN:** 9780080535920

**Category:** Computers

**Page:** 306

**View:** 7948

Mathematical Logic is a collection of the works of one of the leading figures in 20th-century science. This collection of A.M. Turing's works is intended to include all his mature scientific writing, including a substantial quantity of unpublished material. His work in pure mathematics and mathematical logic extended considerably further; the work of his last years, on morphogenesis in plants, is also of the greatest originality and of permanent importance. This book is divided into three parts. The first part focuses on computability and ordinal logics and covers Turing's work between 1937 and 1938. The second part covers type theory; it provides a general introduction to Turing's work on type theory and covers his published and unpublished works between 1941 and 1948. Finally, the third part focuses on enigmas, mysteries, and loose ends. This concluding section of the book discusses Turing's Treatise on the Enigma, with excerpts from the Enigma Paper. It also delves into Turing's papers on programming and on minimum cost sequential analysis, featuring an excerpt from the unpublished manuscript. This book will be of interest to mathematicians, logicians, and computer scientists.

**Author**: Dirk van Dalen

**Publisher:** Springer Science & Business Media

**ISBN:** 3662029626

**Category:** Mathematics

**Page:** 220

**View:** 2416

New corrected printing of a well-established text on logic at the introductory level.
*The Logic of Boolean Equations*

**Author**: Frank Markham Brown

**Publisher:** Courier Corporation

**ISBN:** 0486164594

**Category:** Mathematics

**Page:** 304

**View:** 8754

Concise text begins with overview of elementary mathematical concepts and outlines theory of Boolean algebras; defines operators for elimination, division, and expansion; covers syllogistic reasoning, solution of Boolean equations, functional deduction. 1990 edition.
*and to the Methodology of Deductive Sciences*

**Author**: Alfred Tarski

**Publisher:** Courier Corporation

**ISBN:** 0486318893

**Category:** Mathematics

**Page:** 272

**View:** 2461

This classic undergraduate treatment examines the deductive method in its first part and explores applications of logic and methodology in constructing mathematical theories in its second part. Exercises appear throughout.

**Author**: Raymond M. Smullyan

**Publisher:** Courier Corporation

**ISBN:** 0486782972

**Category:** Mathematics

**Page:** 304

**View:** 680

Combining stories of great writers and philosophers with quotations and riddles, this completely original text for first courses in mathematical logic examines problems related to proofs, propositional logic and first-order logic, undecidability, and other topics. 2013 edition.

Full PDF Download Free

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy