Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

Author: Kai L. Chung
Publisher: Springer-Verlag
ISBN: 3642670334
Category: Mathematics
Page: 346
View: 451

Continue Reading →

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

Wahrscheinlichkeitsrechnung für Dummies

Author: Deborah J. Rumsey
Publisher: John Wiley & Sons
ISBN: 3527805494
Category: Mathematics
Page: 374
View: 2861

Continue Reading →

Die Wahrscheinlichkeitsrechnung wird in der Schule oft nur beiläufig behandelt, dabei handelt es sich um ein besonders spannendes und alltagstaugliches Teilgebiet der Mathematik. Für alle, die über dieses Thema noch etwas mehr erfahren wollen oder müssen, erklärt Deborah Rumsey verständlich und mit Humor, was sie unbedingt wissen sollten. Egal ob Kontingenztabelle, zentraler Grenzwertsatz, Stichproben-, Binomial- oder Poissonverteilung, in diesem Buch lernen Sie, was es ist und wie Sie es anwenden. Zu jedem Kapitel finden Sie online eine Übungsaufgabe samt Lösung, um das Gelernte zu festigen. Auch Tipps zu praktischen Anwendungen - ob bei der Arbeit oder am Pokertisch - kommen nicht zu kurz. So finden Sie in diesem Buch alles, was Sie über Wahrscheinlichkeitsrechnung unbedingt wissen sollten.

Introduction to Probability

Author: Charles Miller Grinstead,James Laurie Snell
Publisher: American Mathematical Soc.
ISBN: 0821894145
Category: Probabilities
Page: 510
View: 8824

Continue Reading →

This text is designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject. The text is also recommended for use in discrete probability courses. The material is organized so that the discrete and continuous probability discussions are presented in a separate, but parallel, manner. This organization does not emphasize an overly rigorous or formal view of probability and therefore offers some strong pedagogical value. Hence, the discrete discussions can sometimes serve to motivate the more abstract continuous probability discussions. Features: Key ideas are developed in a somewhat leisurely style, providing a variety of interesting applications to probability and showing some nonintuitive ideas. Over 600 exercises provide the opportunity for practicing skills and developing a sound understanding of ideas. Numerous historical comments deal with the development of discrete probability. The text includes many computer programs that illustrate the algorithms or the methods of computation for important problems. The book is a beautiful introduction to probability theory at the beginning level. The book contains a lot of examples and an easy development of theory without any sacrifice of rigor, keeping the abstraction to a minimal level. It is indeed a valuable addition to the study of probability theory. --Zentralblatt MATH

Introduction to Probability with Texas Hold’em Examples

Author: Frederic Paik Schoenberg
Publisher: CRC Press
ISBN: 1439827699
Category: Mathematics
Page: 199
View: 8296

Continue Reading →

Introduction to Probability with Texas Hold’em Examples illustrates both standard and advanced probability topics using the popular poker game of Texas Hold’em, rather than the typical balls in urns. The author uses students’ natural interest in poker to teach important concepts in probability. This classroom-tested book covers the main subjects of a standard undergraduate probability course, including basic probability rules, standard models for describing collections of data, and the laws of large numbers. It also discusses several more advanced topics, such as the ballot theorem, the arcsine law, and random walks, as well as some specialized poker issues, such as the quantification of luck and skill in Texas Hold’em. Homework problems are provided at the end of each chapter. The author includes examples of actual hands of Texas Hold’em from the World Series of Poker and other major tournaments and televised games. He also explains how to use R to simulate Texas Hold’em tournaments for student projects. R functions for running the tournaments are freely available from CRAN (in a package called holdem). See Professor Schoenberg discuss the book.

A Natural Introduction to Probability Theory

Author: R. Meester
Publisher: Springer Science & Business Media
ISBN: 9783764387242
Category: Mathematics
Page: 198
View: 8797

Continue Reading →

Compactly written, but nevertheless very readable, appealing to intuition, this introduction to probability theory is an excellent textbook for a one-semester course for undergraduates in any direction that uses probabilistic ideas. Technical machinery is only introduced when necessary. The route is rigorous but does not use measure theory. The text is illustrated with many original and surprising examples and problems taken from classical applications like gambling, geometry or graph theory, as well as from applications in biology, medicine, social sciences, sports, and coding theory. Only first-year calculus is required.


Author: Alʹbert Nikolaevich Shiri︠a︡ev,Hans Jürgen Engelbert
Publisher: N.A
Category: Probabilities
Page: 592
View: 6617

Continue Reading →

Introduction to Probability with Statistical Applications

Author: Géza Schay
Publisher: Springer Science & Business Media
ISBN: 0817644970
Category: Mathematics
Page: 318
View: 990

Continue Reading →

Introduction to Probability with Statistical Applications targets non-mathematics students, undergraduates and graduates, who do not need an exhaustive treatment of the subject. The presentation is rigorous and contains theorems and proofs, and linear algebra is largely avoided so only a minimal amount of multivariable calculus is needed. The book contains clear definitions, simplified notation and techniques of statistical analysis, which combined with well-chosen examples and exercises, motivate the exposition. Theory and applications are carefully balanced. Throughout the book there are references to more advanced concepts if required.

An Introduction to Probabilistic Modeling

Author: Pierre Bremaud
Publisher: Springer Science & Business Media
ISBN: 9780387964607
Category: Mathematics
Page: 207
View: 3256

Continue Reading →

Introduction to the basic concepts of probability theory: independence, expectation, convergence in law and almost-sure convergence. Short expositions of more advanced topics such as Markov Chains, Stochastic Processes, Bayesian Decision Theory and Information Theory.

A Beginner’s Guide to Discrete Mathematics

Author: W. D. Wallis
Publisher: Springer Science & Business Media
ISBN: 9780817642693
Category: Mathematics
Page: 367
View: 9948

Continue Reading →

This introduction to discrete mathematics is aimed at freshmen and sophomores in mathematics and computer science. It begins with a survey of number systems and elementary set theory before moving on to treat data structures, counting, probability, relations and functions, graph theory, matrices, number theory and cryptography. The end of each section contains problem sets with selected solutions, and good examples occur throughout the text.

Introduction to Probability Models

Author: Sheldon M. Ross
Publisher: Academic Press
ISBN: 9780123756879
Category: Mathematics
Page: 800
View: 2597

Continue Reading →

Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: Superior writing style Excellent exercises and examples covering the wide breadth of coverage of probability topics Real-world applications in engineering, science, business and economics

Introduction to Geometric Probability

Author: Daniel A. Klain,Gian-Carlo Rota
Publisher: Cambridge University Press
ISBN: 9780521596541
Category: Mathematics
Page: 178
View: 4132

Continue Reading →

The basic ideas of the subject and the analogues with enumerative combinatorics are described and exploited.

Introduction to Scientific Programming and Simulation Using R, Second Edition

Author: Owen Jones,Robert Maillardet,Andrew Robinson
Publisher: CRC Press
ISBN: 1466570016
Category: Mathematics
Page: 606
View: 2130

Continue Reading →

Learn How to Program Stochastic Models Highly recommended, the best-selling first edition of Introduction to Scientific Programming and Simulation Using R was lauded as an excellent, easy-to-read introduction with extensive examples and exercises. This second edition continues to introduce scientific programming and stochastic modelling in a clear, practical, and thorough way. Readers learn programming by experimenting with the provided R code and data. The book’s four parts teach: Core knowledge of R and programming concepts How to think about mathematics from a numerical point of view, including the application of these concepts to root finding, numerical integration, and optimisation Essentials of probability, random variables, and expectation required to understand simulation Stochastic modelling and simulation, including random number generation and Monte Carlo integration In a new chapter on systems of ordinary differential equations (ODEs), the authors cover the Euler, midpoint, and fourth-order Runge-Kutta (RK4) schemes for solving systems of first-order ODEs. They compare the numerical efficiency of the different schemes experimentally and show how to improve the RK4 scheme by using an adaptive step size. Another new chapter focuses on both discrete- and continuous-time Markov chains. It describes transition and rate matrices, classification of states, limiting behaviour, Kolmogorov forward and backward equations, finite absorbing chains, and expected hitting times. It also presents methods for simulating discrete- and continuous-time chains as well as techniques for defining the state space, including lumping states and supplementary variables. Building readers’ statistical intuition, Introduction to Scientific Programming and Simulation Using R, Second Edition shows how to turn algorithms into code. It is designed for those who want to make tools, not just use them. The code and data are available for download from CRAN.

An Introduction to Probability and Statistics

Author: Vijay K. Rohatgi,A. K. Md. Ehsanes Saleh
Publisher: John Wiley & Sons
ISBN: 1118165683
Category: Mathematics
Page: 744
View: 6938

Continue Reading →

The second edition of a well-received book that was published 24 years ago and continues to sell to this day, An Introduction to Probability and Statistics is now revised to incorporate new information as well as substantial updates of existing material.

How to Count

An Introduction to Combinatorics and Its Applications
Author: Robert A. Beeler
Publisher: Springer
ISBN: 3319138448
Category: Mathematics
Page: 361
View: 575

Continue Reading →

Providing a self-contained resource for upper undergraduate courses in combinatorics, this text emphasizes computation, problem solving, and proof technique. In particular, the book places special emphasis the Principle of Inclusion and Exclusion and the Multiplication Principle. To this end, exercise sets are included at the end of every section, ranging from simple computations (evaluate a formula for a given set of values) to more advanced proofs. The exercises are designed to test students' understanding of new material, while reinforcing a working mastery of the key concepts previously developed in the book. Intuitive descriptions for many abstract techniques are included. Students often struggle with certain topics, such as generating functions, and this intuitive approach to the problem is helpful in their understanding. When possible, the book introduces concepts using combinatorial methods (as opposed to induction or algebra) to prove identities. Students are also asked to prove identities using combinatorial methods as part of their exercises. These methods have several advantages over induction or algebra.

Wahrscheinlichkeitstheorie und Stochastische Prozesse

Author: Michael Mürmann
Publisher: Springer-Verlag
ISBN: 364238160X
Category: Mathematics
Page: 428
View: 2128

Continue Reading →

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

Introduction to Probability and Its Applications

Author: Richard L. Scheaffer,Linda Young
Publisher: Cengage Learning
ISBN: 0534386717
Category: Mathematics
Page: 480
View: 4262

Continue Reading →

This text focuses on the utility of probability in solving real-world problems for students in a one-semester calculus-based probability course. Theory is developed to a practical degree and grounded in discussion of its practical uses in solving real-world problems. Numerous applications using up-to-date real data in engineering and the life, social, and physical sciences illustrate and motivate the many ways probability affects our lives. The text's accessible presentation carefully progresses from routine to more difficult problems to suit students of different backgrounds, and carefully explains how and where to apply methods. Students going on to more advanced courses in probability and statistics will gain a solid background in fundamental concepts and theory, while students who must apply probability to their courses engineering and the sciences will develop a working knowledge of the subject and appreciation of its practical power. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Differentialgleichungen und ihre Anwendungen

Author: Martin Braun
Publisher: Springer-Verlag
ISBN: 3642973418
Category: Mathematics
Page: 596
View: 6099

Continue Reading →

Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#