## Introduction to Analysis

Author: Edward Gaughan
Publisher: American Mathematical Soc.
ISBN: 9780821847879
Category: Mathematics
Page: 240
View: 1623

Introduction to Analysis is designed to bridge the gap between the intuitive calculus usually offered at the undergraduate level and the sophisticated analysis courses the student encounters at the graduate level. In this book the student is given the vocabulary and facts necessary for further study in analysis. The course for which it is designed is usually offered at the junior level, and it is assumed that the student has little or no previous experience with proofs in analysis. A considerable amount of time is spent motivating the theorems and proofs and developing the reader's intuition. Of course, that intuition must be tempered with the realization that rigorous proofs are required for theorems. The topics are quite standard: convergence of sequences, limits of functions, continuity, differentiation, the Riemann integral, infinite series, power series, and convergence of sequences of functions. Many examples are given to illustrate the theory, and exercises at the end of each chapter are keyed to each section. Also, at the end of each section, one finds several Projects. The purpose of a Project is to give the reader a substantial mathematical problem and the necessary guidance to solve that problem. A Project is distinguished from an exercise in that the solution of a Project is a multi-step process requiring assistance for the beginner student.

## An Introduction to Complex Analysis and Geometry

Author: John P. D'Angelo
Publisher: American Mathematical Soc.
ISBN: 0821852744
Category: Mathematics
Page: 163
View: 4453

An Introduction to Complex Analysis and Geometry provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The book developed from courses given in the Campus Honors Program at the University of Illinois Urbana-Champaign. These courses aimed to share with students the way many mathematics and physics problems magically simplify when viewed from the perspective of complex analysis. The book begins at an elementary level but also contains advanced material. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 through 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study. The 280 exercises range from simple computations to difficult problems. Their variety makes the book especially attractive. A reader of the first four chapters will be able to apply complex numbers in many elementary contexts. A reader of the full book will know basic one complex variable theory and will have seen it integrated into mathematics as a whole. Research mathematicians will discover several novel perspectives.

## Number Systems: An Introduction to Algebra and Analysis

Author: Sergei Ovchinnikov
Publisher: American Mathematical Soc.
ISBN: 147042018X
Category: Mathematics
Page: 144
View: 9708

This book offers a rigorous and coherent introduction to the five basic number systems of mathematics, namely natural numbers, integers, rational numbers, real numbers, and complex numbers. It is a subject that many mathematicians believe should be learned by any student of mathematics including future teachers. The book starts with the development of Peano arithmetic in the first chapter which includes mathematical induction and elements of recursion theory. It proceeds to an examination of integers that also covers rings and ordered integral domains. The presentation of rational numbers includes material on ordered fields and convergence of sequences in these fields. Cauchy and Dedekind completeness properties of the field of real numbers are established, together with some properties of real continuous functions. An elementary proof of the Fundamental Theorem of Algebra is the highest point of the chapter on complex numbers. The great merit of the book lies in its extensive list of exercises following each chapter. These exercises are designed to assist the instructor and to enhance the learning experience of the students.

## Spaces: An Introduction to Real Analysis

Author: Tom L. Lindstrøm
Publisher: American Mathematical Soc.
ISBN: 1470440628
Category: Functional analysis
Page: 369
View: 9327

Spaces is a modern introduction to real analysis at the advanced undergraduate level. It is forward-looking in the sense that it first and foremost aims to provide students with the concepts and techniques they need in order to follow more advanced courses in mathematical analysis and neighboring fields. The only prerequisites are a solid understanding of calculus and linear algebra. Two introductory chapters will help students with the transition from computation-based calculus to theory-based analysis. The main topics covered are metric spaces, spaces of continuous functions, normed spaces, differentiation in normed spaces, measure and integration theory, and Fourier series. Although some of the topics are more advanced than what is usually found in books of this level, care is taken to present the material in a way that is suitable for the intended audience: concepts are carefully introduced and motivated, and proofs are presented in full detail. Applications to differential equations and Fourier analysis are used to illustrate the power of the theory, and exercises of all levels from routine to real challenges help students develop their skills and understanding. The text has been tested in classes at the University of Oslo over a number of years.

## Introduction to Visual Computing

Core Concepts in Computer Vision, Graphics, and Image Processing
Publisher: CRC Press
ISBN: 1315355523
Category: Computers
Page: 376
View: 6700

Introduction to Visual Computing: Core Concepts in Computer Vision, Graphics, and Image Processing covers the fundamental concepts of visual computing. Whereas past books have treated these concepts within the context of specific fields such as computer graphics, computer vision or image processing, this book offers a unified view of these core concepts, thereby providing a unified treatment of computational and mathematical methods for creating, capturing, analyzing and manipulating visual data (e.g. 2D images, 3D models). Fundamentals covered in the book include convolution, Fourier transform, filters, geometric transformations, epipolar geometry, 3D reconstruction, color and the image synthesis pipeline. The book is organized in four parts. The first part provides an exposure to different kinds of visual data (e.g. 2D images, videos and 3D geometry) and the core mathematical techniques that are required for their processing (e.g. interpolation and linear regression.) The second part of the book on Image Based Visual Computing deals with several fundamental techniques to process 2D images (e.g. convolution, spectral analysis and feature detection) and corresponds to the low level retinal image processing that happens in the eye in the human visual system pathway. The next part of the book on Geometric Visual Computing deals with the fundamental techniques used to combine the geometric information from multiple eyes creating a 3D interpretation of the object and world around us (e.g. transformations, projective and epipolar geometry, and 3D reconstruction). This corresponds to the higher level processing that happens in the brain combining information from both the eyes thereby helping us to navigate through the 3D world around us. The last two parts of the book cover Radiometric Visual Computing and Visual Content Synthesis. These parts focus on the fundamental techniques for processing information arising from the interaction of light with objects around us, as well as the fundamentals of creating virtual computer generated worlds that mimic all the processing presented in the prior sections. The book is written for a 16 week long semester course and can be used for both undergraduate and graduate teaching, as well as a reference for professionals.

An Introduction to Modern Analysis
Author: Voxman
Publisher: Routledge
ISBN: 1351468677
Category: Mathematics
Page: 696
View: 9216

Advanced Calculus: An Introduction to Modem Analysis, an advanced undergraduate textbook,provides mathematics majors, as well as students who need mathematics in their field of study,with an introduction to the theory and applications of elementary analysis. The text presents, inan accessible form, a carefully maintained balance between abstract concepts and applied results ofsignificance that serves to bridge the gap between the two- or three-cemester calculus sequence andsenior/graduate level courses in the theory and appplications of ordinary and partial differentialequations, complex variables, numerical methods, and measure and integration theory.The book focuses on topological concepts, such as compactness, connectedness, and metric spaces,and topics from analysis including Fourier series, numerical analysis, complex integration, generalizedfunctions, and Fourier and Laplace transforms. Applications from genetics, spring systems,enzyme transfer, and a thorough introduction to the classical vibrating string, heat transfer, andbrachistochrone problems illustrate this book's usefulness to the non-mathematics major. Extensiveproblem sets found throughout the book test the student's understanding of the topics andhelp develop the student's ability to handle more abstract mathematical ideas.Advanced Calculus: An Introduction to Modem Analysis is intended for junior- and senior-levelundergraduate students in mathematics, biology, engineering, physics, and other related disciplines.An excellent textbook for a one-year course in advanced calculus, the methods employed in thistext will increase students' mathematical maturity and prepare them solidly for senior/graduatelevel topics. The wealth of materials in the text allows the instructor to select topics that are ofspecial interest to the student. A two- or three?ll?lester calculus sequence is required for successfuluse of this book.

## Measure and Integral

An Introduction to Real Analysis, Second Edition
Author: Richard L. Wheeden
Publisher: CRC Press
ISBN: 1498702902
Category: Mathematics
Page: 532
View: 1021

Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less geometric content. Published nearly forty years after the first edition, this long-awaited Second Edition also: Studies the Fourier transform of functions in the spaces L1, L2, and Lp, 1 p Shows the Hilbert transform to be a bounded operator on L2, as an application of the L2 theory of the Fourier transform in the one-dimensional case Covers fractional integration and some topics related to mean oscillation properties of functions, such as the classes of Hölder continuous functions and the space of functions of bounded mean oscillation Derives a subrepresentation formula, which in higher dimensions plays a role roughly similar to the one played by the fundamental theorem of calculus in one dimension Extends the subrepresentation formula derived for smooth functions to functions with a weak gradient Applies the norm estimates derived for fractional integral operators to obtain local and global first-order Poincaré–Sobolev inequalities, including endpoint cases Proves the existence of a tangent plane to the graph of a Lipschitz function of several variables Includes many new exercises not present in the first edition This widely used and highly respected text for upper-division undergraduate and first-year graduate students of mathematics, statistics, probability, or engineering is revised for a new generation of students and instructors. The book also serves as a handy reference for professional mathematicians.

## Analysis I

Author: Wolfgang Walter
Publisher: Springer-Verlag
ISBN: 3662057085
Category: Mathematics
Page: 388
View: 312

Das vorliegende Buch ist der erste Band eines zweibändigen Werkes über Analysis und behandelt die Funktionen einer reellen Veränderlichen. In der komplexen Analysis beschränkt es sich im wesentlichen auf Potenzreihen. Es enthält insbesondere den Stoff, welcher üblicherweise im ersten Semester einer einführenden Analysis-Vorlesung für Mathematiker, Physiker und Informatiker geboten wird, und geht an einigen Stellen darüber hinaus. Das Buch wendet sich an Studenten, denen es sich als ein hilfreicher Begleiter der Vorlesung und eine Quelle zur Vertiefung des Gegenstandes anbietet, an die im Beruf stehen den Mathematiker, besonders an die Lehrer an weiterführenden Schulen, und schließlich an alle, die etwas über die Analysis und ihre Bedeutung im größeren naturwissenschaftlichen und kulturellen Zusammenhang erfahren möchten. Damit sind wir bei einem wesentlichen Anliegen der Lehrbuchreihe "Grundwissen Mathematik", dem historischen Bezug. Die mathematischen Be griffe und Inhalte der Analysis sind nicht vom Himmel der reinen Erkenntnis gefallen, und kein Denker im Elfenbeinturm hat sie ersonnen. Die europäische Geistesgeschichte beginnt dort, wo Natur nicht mehr als rätselhaftes, von un heimlichen höheren Mächten gesteuertes Geschehen, sondern als rational erklärbar verstanden wird: bei den jonischen Philosophen des 6. vorchrist lichen Jahrhunderts. Die Analysis ist entstanden in der Verfolgung dieses Zie les, die Welt rational zu durchdringen und ihre Gesetzmäßigkeiten zu finden. Ihre Geschichte ist ein Stück Kulturgeschichte.

## Complex Analysis for Mathematics and Engineering

Author: John H. Mathews,Russell W. Howell
Publisher: Jones & Bartlett Learning
ISBN: 9780763714253
Category: Mathematics
Page: 596
View: 8478

Complex Analysis for Mathematics and Engineering strikes a balance between the pure and applied aspects of complex analysis, and presents concepts using a clear writing style. Believing that mathemati

## Finite-Elemente-Methoden

Author: Klaus-Jürgen Bathe
Publisher: Springer Verlag
ISBN: 9783540668060
Category: Technology & Engineering
Page: 1253
View: 8261

Dieses Lehr- und Handbuch behandelt sowohl die elementaren Konzepte als auch die fortgeschrittenen und zukunftsweisenden linearen und nichtlinearen FE-Methoden in Statik, Dynamik, Festkörper- und Fluidmechanik. Es wird sowohl der physikalische als auch der mathematische Hintergrund der Prozeduren ausführlich und verständlich beschrieben. Das Werk enthält eine Vielzahl von ausgearbeiteten Beispielen, Rechnerübungen und Programmlisten. Als Übersetzung eines erfolgreichen amerikanischen Lehrbuchs hat es sich in zwei Auflagen auch bei den deutschsprachigen Ingenieuren etabliert. Die umfangreichen Änderungen gegenüber der Vorauflage innerhalb aller Kapitel - vor allem aber der fortgeschrittenen - spiegeln die rasche Entwicklung innerhalb des letzten Jahrzehnts auf diesem Gebiet wieder.

## An Introduction to Nonlinear Partial Differential Equations

Author: J. David Logan
Publisher: John Wiley & Sons
ISBN: 0470225955
Category: Mathematics
Page: 397
View: 4127

An Introduction to Nonlinear Partial Differential Equations is a textbook on nonlinear partial differential equations. It is technique oriented with an emphasis on applications and is designed to build a foundation for studying advanced treatises in the field. The Second Edition features an updated bibliography as well as an increase in the number of exercises. All software references have been updated with the latest version of [email protected], the corresponding graphics have also been updated using [email protected] An increased focus on hydrogeology...

## Introduction to Partial Differential Equations

Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 3319020994
Category: Mathematics
Page: 636
View: 4165

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

## Differentialgleichungen und ihre Anwendungen

Author: Martin Braun
Publisher: Springer-Verlag
ISBN: 3642973418
Category: Mathematics
Page: 596
View: 9189

Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#

## An Introduction to Hilbert Space

Author: N. Young
Publisher: Cambridge University Press
ISBN: 1107717167
Category: Mathematics
Page: 256
View: 9564

This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.

## Numerische lineare Algebra

Eine konzise Einführung mit MATLAB und Julia
Author: Folkmar Bornemann
Publisher: Springer-Verlag
ISBN: 3658128844
Category: Mathematics
Page: 145
View: 2038

Dieses Buch führt anhand grundlegender Problemstellungen der linearen Algebra in das algorithmisch-numerische Denken ein. Die Beschränkung auf die lineare Algebra sichert dabei eine stärkere thematische Kohärenz als sie sonst in einführenden Vorlesungen zur Numerik zu finden ist. Die Darstellung betont die Zweckmäßigkeit von Matrixpartitionierungen gegenüber einer komponentenweisen Betrachtung, was sich nicht nur in einer übersichtlicheren Notation und kürzeren Algorithmen auszahlt, sondern angesichts moderner Computerarchitekturen auch zu signifikanten Laufzeitgewinnen führt. Die Algorithmen und begleitenden numerischen Beispiele werden in der Programmierumgebung MATLAB angegeben, zusätzlich aber in einem Anhang auch in der zukunftsweisenden, frei zugänglichen Programmiersprache Julia. Das vorliegende Buch eignet sich für eine zweistündige Vorlesung über numerische lineare Algebra ab dem zweiten Semester des Bachelorstudiengangs Mathematik.

## An Introduction to Laplace Transforms and Fourier Series

Author: Phil Dyke
Publisher: Springer Science & Business Media
ISBN: 1447163958
Category: Mathematics
Page: 318
View: 6311

In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and biological modelling requiring techniques for solving initial value problems.

## Topological Vector Spaces, Distributions and Kernels

Author: Francois Treves
Publisher: Courier Corporation
ISBN: 0486318109
Category: Mathematics
Page: 592
View: 687

Extending beyond the boundaries of Hilbert and Banach space theory, this text focuses on key aspects of functional analysis, particularly in regard to solving partial differential equations. 1967 edition.

An Introduction to Classical Analysis
Author: Louis Brand
Publisher: Courier Corporation
ISBN: 0486157997
Category: Mathematics
Page: 608
View: 7005

A course in analysis that focuses on the functions of a real variable, this text introduces the basic concepts in their simplest setting and illustrates its teachings with numerous examples, theorems, and proofs. 1955 edition.

## Partielle Differentialgleichungen

Eine Einführung
Author: Walter A. Strauss
Publisher: Springer-Verlag
ISBN: 366312486X
Category: Mathematics
Page: 458
View: 2993

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

## Internationale mathematische Nachrichten

Author: N.A
Publisher: N.A
ISBN: N.A
Category:
Page: N.A
View: 9796

Issues for Dec. 1952- include section: Nachrichten der Österreichischen Mathematischen Gesellschaft.