Fourier Analysis: Volume 1, Theory


Author: Adrian Constantin
Publisher: Cambridge University Press
ISBN: 1316670805
Category: Mathematics
Page: N.A
View: 9456

Continue Reading →

Fourier analysis aims to decompose functions into a superposition of simple trigonometric functions, whose special features can be exploited to isolate specific components into manageable clusters before reassembling the pieces. This two-volume text presents a largely self-contained treatment, comprising not just the major theoretical aspects (Part I) but also exploring links to other areas of mathematics and applications to science and technology (Part II). Following the historical and conceptual genesis, this book (Part I) provides overviews of basic measure theory and functional analysis, with added insight into complex analysis and the theory of distributions. The material is intended for both beginning and advanced graduate students with a thorough knowledge of advanced calculus and linear algebra. Historical notes are provided and topics are illustrated at every stage by examples and exercises, with separate hints and solutions, thus making the exposition useful both as a course textbook and for individual study.

Fourier Analysis with Applications


Author: Adrian Constantin
Publisher: Cambridge University Press
ISBN: 1107044103
Category: Mathematics
Page: 379
View: 6745

Continue Reading →

Fourier analysis aims to decompose functions into a superposition of simple trigonometric functions, whose special features can be exploited to isolate specific components into manageable clusters before reassembling the pieces. This two-volume text presents a largely self-contained treatment, comprising not just the major theoretical aspects (Part I) but also exploring links to other areas of mathematics and applications to science and technology (Part II). Following the historical and conceptual genesis, this book (Part I) provides overviews of basic measure theory and functional analysis, with added insight into complex analysis and the theory of distributions. The material is intended for both beginning and advanced graduate students with a thorough knowledge of advanced calculus and linear algebra. Historical notes are provided and topics are illustrated at every stage by examples and exercises, with separate hints and solutions, thus making the exposition useful both as a course textbook and for individual study.

Fourier Analysis and Approximation

One Dimensional Theory
Author: Paul Butzer,Nessel,Trebels
Publisher: Birkhäuser
ISBN: 9783764305208
Category: Mathematics
Page: 554
View: 5350

Continue Reading →

At the international conference on 'Harmonic Analysis and Integral Transforms', conducted by one of the authors at the Mathematical Research Institute in Oberwolfach (Black Forest) in August 1965, it was felt that there was a real need for a book on Fourier analysis stressing (i) parallel treatment of Fourier series and Fourier trans forms from a transform point of view, (ii) treatment of Fourier transforms in LP(lRn)_ space not only for p = 1 and p = 2, (iii) classical solution of partial differential equations with completely rigorous proofs, (iv) theory of singular integrals of convolu tion type, (v) applications to approximation theory including saturation theory, (vi) multiplier theory, (vii) Hilbert transforms, Riesz fractional integrals, Bessel potentials, (viii) Fourier transform methods on locally compact groups. This study aims to consider these aspects, presenting a systematic treatment of Fourier analysis on the circle as well as on the infinite line, and of those areas of approximation theory which are in some way or other related thereto. A second volume is in preparation which goes beyond the one-dimensional theory presented here to cover the subject for functions of several variables. Approximately a half of this first volume deals with the theories of Fourier series and of Fourier integrals from a transform point of view.

Sampling Theory in Fourier and Signal Analysis: Advanced Topics


Author: J. R. Higgins
Publisher: Oxford University Press
ISBN: 9780198534969
Category: Mathematics
Page: 296
View: 5183

Continue Reading →

Volume 1 in this series laid the mathematical foundations of sampling theory; Volume 2 surveys the many applications of the theory both within mathematics and in other areas of science. Topics range over a wide variety of areas, and each application is given a modern treatment.

Excursions in Harmonic Analysis, Volume 1

The February Fourier Talks at the Norbert Wiener Center
Author: Travis D Andrews,Radu Balan,John J. Benedetto,Wojciech Czaja,Kasso A. Okoudjou
Publisher: Springer Science & Business Media
ISBN: 0817683763
Category: Mathematics
Page: 488
View: 8766

Continue Reading →

The Norbert Wiener Center for Harmonic Analysis and Applications provides a state-of-the-art research venue for the broad emerging area of mathematical engineering in the context of harmonic analysis. This two-volume set consists of contributions from speakers at the February Fourier Talks (FFT) from 2006-2011. The FFT are organized by the Norbert Wiener Center in the Department of Mathematics at the University of Maryland, College Park. These volumes span a large spectrum of harmonic analysis and its applications. They are divided into the following parts: Volume I · Sampling Theory · Remote Sensing · Mathematics of Data Processing · Applications of Data Processing Volume II · Measure Theory · Filtering · Operator Theory · Biomathematics Each part provides state-of-the-art results, with contributions from an impressive array of mathematicians, engineers, and scientists in academia, industry, and government. Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center is an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.

New Trends in Applied Harmonic Analysis

Sparse Representations, Compressed Sensing, and Multifractal Analysis
Author: Akram Aldroubi,Carlos Cabrelli,Stephane Jaffard,Ursula Molter
Publisher: Birkhäuser
ISBN: 3319278738
Category: Mathematics
Page: 334
View: 5162

Continue Reading →

This volume is a selection of written notes corresponding to courses taught at the CIMPA School: "New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis". New interactions between harmonic analysis and signal and image processing have seen striking development in the last 10 years, and several technological deadlocks have been solved through the resolution of deep theoretical problems in harmonic analysis. New Trends in Applied Harmonic Analysis focuses on two particularly active areas that are representative of such advances: multifractal analysis, and sparse representation and compressed sensing. The contributions are written by leaders in these areas, and cover both theoretical aspects and applications. This work should prove useful not only to PhD students and postdocs in mathematics and signal and image processing, but also to researchers working in related topics.

Fourier Analysis and Approximation

One Dimensional Theory
Author: P.L. Butzer,Nessel,Trebels
Publisher: Birkhäuser
ISBN: 3034874480
Category: Mathematics
Page: 554
View: 1366

Continue Reading →

At the international conference on 'Harmonic Analysis and Integral Transforms', conducted by one of the authors at the Mathematical Research Institute in Oberwolfach (Black Forest) in August 1965, it was felt that there was a real need for a book on Fourier analysis stressing (i) parallel treatment of Fourier series and Fourier trans forms from a transform point of view, (ii) treatment of Fourier transforms in LP(lRn)_ space not only for p = 1 and p = 2, (iii) classical solution of partial differential equations with completely rigorous proofs, (iv) theory of singular integrals of convolu tion type, (v) applications to approximation theory including saturation theory, (vi) multiplier theory, (vii) Hilbert transforms, Riesz fractional integrals, Bessel potentials, (viii) Fourier transform methods on locally compact groups. This study aims to consider these aspects, presenting a systematic treatment of Fourier analysis on the circle as well as on the infinite line, and of those areas of approximation theory which are in some way or other related thereto. A second volume is in preparation which goes beyond the one-dimensional theory presented here to cover the subject for functions of several variables. Approximately a half of this first volume deals with the theories of Fourier series and of Fourier integrals from a transform point of view.

Fourier Analysis

An Introduction
Author: Elias M. Stein,Rami Shakarchi
Publisher: Princeton University Press
ISBN: 1400831237
Category: Mathematics
Page: 328
View: 307

Continue Reading →

This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Fourier Analysis


Author: Eric Stade
Publisher: John Wiley & Sons
ISBN: 1118165519
Category: Mathematics
Page: 520
View: 1418

Continue Reading →

A reader-friendly, systematic introduction to Fourieranalysis Rich in both theory and application, Fourier Analysispresents a unique and thorough approach to a key topic in advancedcalculus. This pioneering resource tells the full story of Fourieranalysis, including its history and its impact on the developmentof modern mathematical analysis, and also discusses essentialconcepts and today's applications. Written at a rigorous level, yet in an engaging style that doesnot dilute the material, Fourier Analysis brings twoprofound aspects of the discipline to the forefront: the wealth ofapplications of Fourier analysis in the natural sciences and theenormous impact Fourier analysis has had on the development ofmathematics as a whole. Systematic and comprehensive, the book: Presents material using a cause-and-effect approach,illustrating where ideas originated and what necessitated them Includes material on wavelets, Lebesgue integration, L2 spaces,and related concepts Conveys information in a lucid, readable style, inspiringfurther reading and research on the subject Provides exercises at the end of each section, as well asillustrations and worked examples throughout the text Based upon the principle that theory and practice arefundamentally linked, Fourier Analysis is the ideal text andreference for students in mathematics, engineering, and physics, aswell as scientists and technicians in a broad range of disciplineswho use Fourier analysis in real-world situations.

Numerical Fourier Analysis


Author: Gerlind Plonka,Daniel Potts,Gabriele Steidl,Manfred Tasche
Publisher: Springer
ISBN: 3030043061
Category: Mathematics
Page: 618
View: 2238

Continue Reading →

This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as nonequispaced and sparse FFTs in higher dimensions. Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums. The code of most of the presented algorithms is available in the authors’ public domain software packages. Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.

Discrete Fourier Analysis


Author: M. W. Wong
Publisher: Springer Science & Business Media
ISBN: 3034801165
Category: Mathematics
Page: 177
View: 6653

Continue Reading →

This textbook presents basic notions and techniques of Fourier analysis in discrete settings. Written in a concise style, it is interlaced with remarks, discussions and motivations from signal analysis. The first part is dedicated to topics related to the Fourier transform, including discrete time-frequency analysis and discrete wavelet analysis. Basic knowledge of linear algebra and calculus is the only prerequisite. The second part is built on Hilbert spaces and Fourier series and culminates in a section on pseudo-differential operators, providing a lucid introduction to this advanced topic in analysis. Some measure theory language is used, although most of this part is accessible to students familiar with an undergraduate course in real analysis. Discrete Fourier Analysis is aimed at advanced undergraduate and graduate students in mathematics and applied mathematics. Enhanced with exercises, it will be an excellent resource for the classroom as well as for self-study.

Classical Fourier Analysis


Author: Loukas Grafakos
Publisher: Springer
ISBN: 1493911945
Category: Mathematics
Page: 638
View: 1302

Continue Reading →

The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition. Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and improved references.

Excursions in Harmonic Analysis, Volume 4

The February Fourier Talks at the Norbert Wiener Center
Author: Radu Balan,Matthew Begué,John J. Benedetto,Wojciech Czaja,Kasso A. Okoudjou
Publisher: Birkhäuser
ISBN: 3319201883
Category: Mathematics
Page: 428
View: 2586

Continue Reading →

This volume consists of contributions spanning a wide spectrum of harmonic analysis and its applications written by speakers at the February Fourier Talks from 2002 – 2013. Containing cutting-edge results by an impressive array of mathematicians, engineers and scientists in academia, industry and government, it will be an excellent reference for graduate students, researchers and professionals in pure and applied mathematics, physics and engineering. Topics covered include: Special Topics in Harmonic Analysis Applications and Algorithms in the Physical Sciences Gabor Theory RADAR and Communications: Design, Theory, and Applications The February Fourier Talks are held annually at the Norbert Wiener Center for Harmonic Analysis and Applications. Located at the University of Maryland, College Park, the Norbert Wiener Center provides a state-of- the-art research venue for the broad emerging area of mathematical engineering.

Classical and Multilinear Harmonic Analysis


Author: Camil Muscalu,Wilhelm Schlag
Publisher: Cambridge University Press
ISBN: 0521882451
Category: Mathematics
Page: 387
View: 2841

Continue Reading →

"This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained, and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderâon-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary, and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderâon's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form"--

Fourier Analysis on Finite Groups and Applications


Author: Audrey Terras
Publisher: Cambridge University Press
ISBN: 9780521457187
Category: Mathematics
Page: 442
View: 4558

Continue Reading →

A friendly introduction to Fourier analysis on finite groups, accessible to undergraduates/graduates in mathematics, engineering and the physical sciences.