Factorization Algebras in Quantum Field Theory

Author: Kevin Costello,Owen Gwilliam
Publisher: Cambridge University Press
ISBN: 1107163102
Category: Mathematics
Page: 398
View: 6079

Continue Reading →

This first volume develops factorization algebras with a focus upon examples exhibiting their use in field theory, which will be useful for researchers and graduates.

Mathematical Foundations of Quantum Field Theory and Perturbative String Theory

Author: Hisham Sati,Urs Schreiber
Publisher: American Mathematical Soc.
ISBN: 0821851950
Category: Mathematics
Page: 354
View: 9101

Continue Reading →

Conceptual progress in fundamental theoretical physics is linked with the search for the suitable mathematical structures that model the physical systems. Quantum field theory (QFT) has proven to be a rich source of ideas for mathematics for a long time. However, fundamental questions such as ``What is a QFT?'' did not have satisfactory mathematical answers, especially on spaces with arbitrary topology, fundamental for the formulation of perturbative string theory. This book contains a collection of papers highlighting the mathematical foundations of QFT and its relevance to perturbative string theory as well as the deep techniques that have been emerging in the last few years. The papers are organized under three main chapters: Foundations for Quantum Field Theory, Quantization of Field Theories, and Two-Dimensional Quantum Field Theories. An introduction, written by the editors, provides an overview of the main underlying themes that bind together the papers in the volume.

Mathematical Aspects of Quantum Field Theories

Author: Damien Calaque,Thomas Strobl
Publisher: Springer
ISBN: 3319099493
Category: Science
Page: 556
View: 1374

Continue Reading →

Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.

Mathematische Physik: Klassische Mechanik

Author: Andreas Knauf
Publisher: Springer-Verlag
ISBN: 3662557762
Category: Science
Page: 652
View: 5588

Continue Reading →

Als Grenztheorie der Quantenmechanik besitzt die klassische Dynamik einen großen Formenreichtum – vom gut berechenbaren bis zum chaotischen Verhalten. Ausgehend von interessanten Beispielen wird in dem Band nicht nur eine gelungene Auswahl grundlegender Themen vermittelt, sondern auch der Einstieg in viele aktuelle Forschungsgebiete im Bereich der klassischen Mechanik. Didaktisch geschickt aufgebaut und mit hilfreichen Anhängen versehen, werden lediglich Kenntnisse der Grundvorlesungen in Mathematik vorausgesetzt. Mit über 100 Aufgaben und Lösungen.

Computer Algebra in Quantum Field Theory

Integration, Summation and Special Functions
Author: Carsten Schneider,Johannes Blümlein
Publisher: Springer Science & Business Media
ISBN: 3709116163
Category: Science
Page: 411
View: 8022

Continue Reading →

The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.

Poisson-Geometrie und Deformationsquantisierung

Eine Einführung
Author: Stefan Waldmann
Publisher: Springer-Verlag
ISBN: 3540725180
Category: Mathematics
Page: 612
View: 8259

Continue Reading →

Erstmals als Lehrbuch, mit ausführlichen Beweisen und über 100 Aufgaben mit Lösungshinweisen. Der Autor entwickelt die Grundlagen zum Thema ausgehend von physikalischen Fragen. Die Poisson-Geometrie bietet den Rahmen für die geometrische Mechanik und stellt eine Verallgemeinerung der symplektischen Geometrie dar. Diese ist bedeutsam für mechanische Systeme mit Symmetrien und deren Phasenraumreduktion. Für die angestrebte Quantisierung sind die geometrischen Sachverhalte algebraisch gedeutet und entsprechend formuliert. Darauf aufbauend bietet die Deformationsquantisierung den Rahmen für die Quantisierung von Poisson-Mannigfaltigkeiten.

Relativität, Gruppen, Teilchen

Spezielle Relativitätstheorie als Grundlage der Feld- und Teilchenphysik
Author: R.U. Sexl,H.K. Urbantke
Publisher: Springer-Verlag
ISBN: 3709122465
Category: Science
Page: 301
View: 3800

Continue Reading →

Towards the Mathematics of Quantum Field Theory

Author: Frédéric Paugam
Publisher: Springer Science & Business Media
ISBN: 3319045644
Category: Science
Page: 487
View: 5330

Continue Reading →

This ambitious and original book sets out to introduce to mathematicians (even including graduate students ) the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in use. This in turn promotes the interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, though mathematicians are the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras.

Factorization Method in Quantum Mechanics

Author: Shi-Hai Dong
Publisher: Springer Science & Business Media
ISBN: 1402057962
Category: Science
Page: 289
View: 1918

Continue Reading →

This book introduces the factorization method in quantum mechanics at an advanced level, with the aim of putting mathematical and physical concepts and techniques like the factorization method, Lie algebras, matrix elements and quantum control at the reader’s disposal. For this purpose, the text provides a comprehensive description of the factorization method and its wide applications in quantum mechanics which complements the traditional coverage found in quantum mechanics textbooks.

Kähler Differentials

Author: Ernst Kunz
Publisher: Vieweg+Teubner Verlag
ISBN: 9783528089733
Category: Mathematics
Page: 402
View: 8040

Continue Reading →

This book is based on a lecture course that I gave at the University of Regensburg. The purpose of these lectures was to explain the role of Kähler differential forms in ring theory, to prepare the road for their application in algebraic geometry, and to lead up to some research problems. The text discusses almost exclusively local questions and is therefore written in the language of commutative alge bra. The translation into the language of algebraic geometry is easy for the reader who is familiar with sheaf theory and the theory of schemes. The principal goals of the monograph are: To display the information contained in the algebra of Kähler differential forms (de Rham algebra) of a commutative algebra, to int- duce and discuss "differential invariants" of algebras, and to prove theorems about algebras with "differential methods". The most important object we study is the module of Kähler differentials n~/R of an algebra SIR. Like the differentials of analysis, differential modules "linearize" problems, i.e. reduce questions about algebras (non-linear problems) to questions of linear algebra. We are mainly interested in algebras of finite type.

Chern-Simons Theory and Equivariant Factorization Algebras

Author: Corina Keller
Publisher: Springer
ISBN: 365825338X
Category: Science
Page: 154
View: 8507

Continue Reading →

Corina Keller studies non-perturbative facets of abelian Chern-Simons theories. This is a refinement of the entirely perturbative approach to classical Chern-Simons theory via homotopy factorization algebras of observables that arise from the associated formal moduli problem describing deformations of flat principal bundles with connections over the spacetime manifold. The author shows that for theories with abelian group structure, this factorization algebra of classical observables comes naturally equipped with an action of the gauge group, which allows to encode non-perturbative effects in the classical observables. About the Author: Corina Keller currently is a doctoral student in the research group of Prof. Dr. Damien Calaque at the Université Montpellier, France. She is mostly interested in the mathematical study of field theories. Her master’s thesis was supervised by PD Dr. Alessandro Valentino and Prof. Dr. Alberto Cattaneo at Zurich University, Switzerland.

Lie-Gruppen und Lie-Algebren

Author: Joachim Hilgert,Karl-Hermann Neeb
Publisher: Springer-Verlag
ISBN: 3322802701
Category: Education
Page: 361
View: 1119

Continue Reading →

Dieses Buch versteht sich als Einführung in die Theorie der Lie-Gruppen. Der Begriff der Lie-Gruppen wird ausgehend von den einfachsten Beispielen, den Matrizengruppen, entwickelt. Eine große Anzahl von Problemen für Lie-Gruppen kann man durch Übertragung auf die zugehörigen Lie-Algebren lösen. Dies ist der Leitgedanke des Buches. Vorausgesetzt werden Kenntnisse in der Linearen Algebra, der Differentialrechnung mehrerer Variablen und der elementaren Gruppentheorie.

Fouriertransformation für Ingenieur- und Naturwissenschaften

Author: Bruno Klingen
Publisher: Springer-Verlag
ISBN: 3642567754
Category: Mathematics
Page: 370
View: 9204

Continue Reading →

Dieses Lehrbuch wendet sich an Studenten der Ingenieurfächer und der Naturwissenschaften. Durch seinen systematischen und didaktischen Aufbau vermeidet es ungenaue Formulierungen und legt so die Grundlage für das Verständnis auch neuerer Methoden. Indem die klassische und die Funktionalanalysis auf der Basis des Fourieroperators zusammengeführt werden, vermittelt es ein fundiertes und verantwortbares Umgehen mit der Fouriertransformation. Gleichzeitig bietet dieses Konzept die Möglichkeit, auch die Fourierreihen, die diskrete Fouriertransformation und die Behandlung der diskreten Filter in einem einheitlichen Zusammenhang darzustellen. Das Buch enthält zahlreiche gelöste Übungsaufgaben. NEU ! Online-Ergänzungen zum Buch im Internet: - zum Kennenlernen und Vergleichen der mathematischen Programmiersysteme Mathematica, Matlab, Maple - zur Vertiefung des Buchinhaltes (unter "Extras im Web")

Universality and Renormalization

From Stochastic Evolution to Renormalization of Quantum Fields
Author: Ilia Binder,Dirk Kreimer
Publisher: American Mathematical Soc.
ISBN: 9780821871539
Category: Science
Page: 404
View: 8899

Continue Reading →

Hilbert Space Operators in Quantum Physics

Author: Jirí Blank,Pavel Exner,Miloslav Havlícek
Publisher: Springer Science & Business Media
ISBN: 9781563961427
Category: Science
Page: 593
View: 2819

Continue Reading →

Market: Mathematicians, researchers, teachers, and graduate students specializing in quantum physics, mathematical physics, and applied mathematics. "I really enjoyed reading this work. It is very well written, by three real experts in the field. It stands quite alone....The translation is remarkably good." John R. Taylor, University of Colorado Based on lectures delivered over the past two decades, this book explains in detail the theory of linear Hilbert-space operators and its uses in quantum physics. The central mathematical tool of this book is the spectral theory of self-adjoint operators, which together with functional analysis and an introduction to the theory of operator sets and algebras, is used in a systematic analysis of the operator aspect of quantum theory. In addition, the theory of Hilbert-space operators is discussed in conjunction with various applications such as Schrodinger operators and scattering theory.

Issues in General and Specialized Mathematics Research: 2011 Edition

Author: N.A
Publisher: ScholarlyEditions
ISBN: 1464964920
Category: Mathematics
Page: 862
View: 6632

Continue Reading →

Issues in General and Specialized Mathematics Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about General and Specialized Mathematics Research. The editors have built Issues in General and Specialized Mathematics Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General and Specialized Mathematics Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General and Specialized Mathematics Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Supersymmetry in Quantum Mechanics

Author: Fred Cooper,Avinash Khare,Uday Pandurang Sukhatme
Publisher: World Scientific
ISBN: 9789810246129
Category: Science
Page: 210
View: 1139

Continue Reading →

This invaluable book provides an elementary description of supersymmetric quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. It gives physicists a fresh outlook and new ways of handling quantum-mechanical problems, and also leads to improved approximation techniques for dealing with potentials of interest in all branches of physics. The algebraic approach to obtaining eigenstates is elegant and important, and all physicists should become familiar with this. The book has been written in such a way that it can be easily appreciated by students in advanced undergraduate quantum mechanics courses. Problems have been given at the end of each chapter, along with complete solutions to all the problems. The text also includes material of interest in current research not usually discussed in traditional courses on quantum mechanics, such as the connection between exact solutions to classical solution problems and isospectral quantum Hamiltonians, and the relation to the inverse scattering problem.