*For X-ray and Neutron Users*

**Author**: D.S. Sivia

**Publisher:**Oxford University Press

**ISBN:**0199228671

**Category:**Science

**Page:**201

**View:**2160

Skip to content
# Search Results for: elementary-scattering-theory

*For X-ray and Neutron Users*

**Author**: D.S. Sivia

**Publisher:** Oxford University Press

**ISBN:** 0199228671

**Category:** Science

**Page:** 201

**View:** 2160

This book provides the basic theoretical background for X-ray and neutron scattering experiments. Since these techniques are increasingly being used by biologists and chemists, as well as physicists, the book is intended to be accessible to a broad spectrum of scientists.
*For X-ray and Neutron Users*

**Author**: D.S. Sivia

**Publisher:** OUP Oxford

**ISBN:** 9780199228683

**Category:** Science

**Page:** 216

**View:** 8391

This book provides the basic theoretical background for X-ray and neutron scattering experiments. Since these techniques are increasingly being used by biologists and chemists, as well as physicists, the book is intended to be accessible to a broad spectrum of scientists.

**Author**: P.K. Verma

**Publisher:** Atlantic Publishers & Dist

**ISBN:** 9788126903849

**Category:** Quantum theory

**Page:** 192

**View:** 5745

The Book Elementary Theory Of Scattering Contains Vector Representation, Linear Operator, Matrix Representation, Schrodinger Picture, Heisenberg Picture, Interaction Picture, Hilbert Space, And Their Applications In Theory Of Scattering. All Standard Integrals And Functions Like Bessel S Function, Green S Function And Fourier Series Have Been Properly Presented To Illustrate The Theory Of Scattering.Transition-Matrix, S-Matrix And Modified Born-Approximation Are Included So That Scattering Theory Can Be Conveniently Comprehended And Extended As Per The Need Of The Interactions.It Is Compatible With The Courses Of Studies Of Honours Degree And Postgraduate Levels.
*The Quantum Theory of Nonrelativistic Collisions*

**Author**: John R. Taylor

**Publisher:** Courier Corporation

**ISBN:** 0486142078

**Category:** Technology & Engineering

**Page:** 512

**View:** 4813

This graduate-level text, intended for any student of physics who requires a thorough grounding in the quantum theory of nonrelativistic scattering, emphasizes the time-dependent approach. 1983 edition.
*A Guide to Multiple Scattering Computer Codes -- Dedicated to C. R. Natoli on the Occasion of his 75th Birthday*

**Author**: Didier Sébilleau,Keisuke Hatada,Hubert Ebert

**Publisher:** Springer

**ISBN:** 3319738119

**Category:** Science

**Page:** 401

**View:** 1001

This edited book, based on material presented at the EU Spec Training School on Multiple Scattering Codes and the following MSNano Conference, is divided into two distinct parts. The first part, subtitled “basic knowledge”, provides the basics of the multiple scattering description in spectroscopies, enabling readers to understand the physics behind the various multiple scattering codes available for modelling spectroscopies. The second part, “extended knowledge”, presents “state- of-the-art” short chapters on specific subjects associated with improving of the actual description of spectroscopies within the multiple scattering formalism, such as inelastic processes, or precise examples of modelling.

**Author**: Roger G. Newton

**Publisher:** Courier Corporation

**ISBN:** 0486425355

**Category:** Science

**Page:** 745

**View:** 1696

This volume crosses the boundaries of physics' traditional subdivisions to treat scattering theory within the context of classical electromagnetic radiation, classical particle mechanics, and quantum mechanics. Includes updates on developments in three-particle collisions, scattering by noncentral potentials, and inverse scattering problems. 1982 edition.

**Author**: P. M. Chaikin,T. C. Lubensky

**Publisher:** Cambridge University Press

**ISBN:** 9780521794503

**Category:** Science

**Page:** 699

**View:** 1117

This successful and widely-reviewed book covering the physics of condensed matter systems is now available in paperback.

**Author**: Albert Furrer,JoÃ«l Mesot,Thierry StrÃ¤ssle

**Publisher:** World Scientific Publishing Company

**ISBN:** 9813102500

**Category:**

**Page:** 316

**View:** 4065

Neutron scattering has become a key technique for investigating the properties of materials on an atomic scale. The uniqueness of this method is based on the fact that the wavelength and energy of thermal neutrons ideally match interatomic distances and excitation energies in condensed matter, and thus neutron scattering is able to directly examine the static and dynamic properties of the material. In addition, neutrons carry a magnetic moment, which makes them a unique probe for detecting magnetic phenomena. In this important book, an introduction to the basic principles and instrumental aspects of neutron scattering is provided, and the most important phenomena and materials properties in condensed matter physics are described and exemplified by typical neutron scattering experiments, with emphasis on explaining how the relevant information can be extracted from the measurements.

**Author**: Michel Le Bellac

**Publisher:** Cambridge University Press

**ISBN:** 1139450794

**Category:** Science

**Page:** N.A

**View:** 6614

Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students.

**Author**: Dzevad Belkic

**Publisher:** CRC Press

**ISBN:** 9781420033649

**Category:** Science

**Page:** 392

**View:** 3556

Scattering is one of the most powerful methods used to study the structure of matter, and many of the most important breakthroughs in physics have been made by means of scattering. Nearly a century has passed since the first investigations in this field, and the work undertaken since then has resulted in a rich literature encompassing both experimental and theoretical results. In scattering, one customarily studies collisions among nuclear, sub-nuclear, atomic or molecular particles, and as these are intrinsically quantum systems, it is logical that quantum mechanics is used as the basis for modern scattering theory. In Principles of Quantum Scattering Theory, the author judiciously combines physical intuition and mathematical rigour to present various selected principles of quantum scattering theory. As always in physics, experiment should be used to ultimately validate physical and mathematical modelling, and the author presents a number of exemplary illustrations, comparing theoretical and experimental cross sections in a selection of major inelastic ion-atom collisions at high non-relativistic energies. Quantum scattering theory, one of the most beautiful theories in physics, is also very rich in mathematics. Principles of Quantum Scattering Theory is intended primarily for graduate physics students, but also for non-specialist physicists for whom the clarity of exposition should aid comprehension of these mathematical complexities.

**Author**: Wim H. de Jeu

**Publisher:** Oxford University Press

**ISBN:** 0191044415

**Category:** Science

**Page:** 192

**View:** 3665

X-ray scattering is a well-established technique in materials science. Several excellent textbooks exist in this field, but these texts are typically written by physicists who use mathematics to make things clear. Consequently these books appeal less to students and scientists in the field of soft matter (polymers, liquid crystals, colloids, self-assembled organic systems) who usually have a more chemical-oriented background with limited mathematics. Moreover, they need to know about the technique of x-ray scattering, but do not intend to become an expert. The aim of this book is to explain basic principles and applications of x-ray scattering in a simple way using many practical examples followed by more elaborate case studies. The book contains a separate chapter on the different types of order/disorder in soft matter that play such an important role in modern self-assembling systems. Finally the last chapter treats soft matter surfaces and thin film that are increasingly used in coatings and in many technological applications, such as liquid crystal displays and nanostructured block copolymer films. This book has been written for the large community of soft matter students and scientists.
*A Two-Term Course*

**Author**: Luigi E. Picasso

**Publisher:** Springer

**ISBN:** 3319226320

**Category:** Science

**Page:** 354

**View:** 3918

Based on a series of university lectures on nonrelativistic quantum mechanics, this textbook covers a wide range of topics, from the birth of quantum mechanics to the fine-structure levels of heavy atoms. The author sets out from the crisis in classical physics and explores the seminal ideas of Einstein, Bohr, and de Broglie and their vital importance for the development of quantum mechanics. There follows a bottom-up presentation of the postulates of quantum mechanics through real experiments (such as those of neutron interferometry), with consideration of their most important consequences, including applications in the field of atomic physics. A final chapter is devoted to the paradoxes of quantum mechanics, and particularly those aspects that are still open and hotly debated, to end up with a mention to Bell's theorem and Aspect's experiments. In presenting the principles of quantum mechanics in an inductive way, this book has already proved very popular with students in its Italian language version.It complements the exercises and solutions book "Problems in Quantum Mechanics", by E. d'Emilio, L.E. Picasso (Springer).

**Author**: Marvin L. Goldberger,Kenneth M. Watson

**Publisher:** Courier Corporation

**ISBN:** 0486435075

**Category:** Science

**Page:** 919

**View:** 7763

A systematic description of the basic principles of collision theory, this graduate-level text presents a detailed examination of scattering processes and formal scattering theory, the two-body problem with central forces, scattering by noncentral forces, lifetime and decay of virtual states, an introduction to dispersion theory, and more. 1964 edition.
*General Theory*

**Author**: D. R. Yafaev

**Publisher:** American Mathematical Soc.

**ISBN:** 9780821897379

**Category:** Mathematics

**Page:** 341

**View:** 2816

Preliminary facts Basic concepts of scattering theory Further properties of the WO Scattering for relatively smooth perturbations The general setup in stationary scattering theory Scattering for perturbations of trace class type Properties of the scattering matrix (SM) The spectral shift function (SSF) and the trace formula

**Author**: Frank O. Goodman

**Publisher:** Elsevier

**ISBN:** 0323154611

**Category:** Science

**Page:** 352

**View:** 7140

Dynamics of Gas-Surface Scattering deals with the dynamics of scattering as inferred from known properties of gases and solids. This book discusses measurements of spatial distributions of scattered atomic and molecular streams, and of the energy and momentum which gas particles exchange at solid surfaces. It also considers two regimes of scattering, both of which are associated with a lower range of incident gas energies: the thermal and structure scattering regimes. Comprised of 10 chapters, this book opens with a brief historical overview of the early experiments that investigated the dynamics of scattering of gases by surfaces. The discussion then turns to some elements of the kinetic theory of gases; intermodular potentials and interaction regimes; and classical-mechanical lattice models used in gas-surface scattering theory. The applications of molecular beams to the study of gas-surface scattering phenomena are also described. The remaining chapters focus on experiments and theories on scattering of molecular streams by surfaces of solids, with emphasis on thermal and structure regimes of inelastic scattering; quantum theory of gas-surface scattering; and quantum mechanical scattering phenomena. This text concludes with an analysis of energy exchange processes that may occur when a solid surface is completely immersed in a still gas. This monograph will be a valuable resource for students and practitioners of physics, chemistry, and applied mathematics.

**Author**: G. L. Squires

**Publisher:** Cambridge University Press

**ISBN:** 1107644062

**Category:** Science

**Page:** 272

**View:** 7204

A long-awaited reprint of the book that has established itself as the classic textbook on neutron scattering. It will be an invaluable introductory text for students taking courses on neutron scattering, as well as for researchers and those who would like to deepen their knowledge on the subject through self-study.

**Author**: Julia S. Higgins,Henri Benoît

**Publisher:** Oxford University Press

**ISBN:** 9780198500636

**Category:** Science

**Page:** 436

**View:** 2691

The application of neutron scattering to polymers has been extremely successful during the last two decades. This book presents, for the first time, both the theories and experimental examples which are needed to understand how these techniques can be applied. Now available in paperback for the first time this book is specifically written to introduce the newcomer and non-expert to the experimental techniques and the basic theory necessary to understand the results.

**Author**: Dzevad Belkic

**Publisher:** CRC Press

**ISBN:** 9781420033649

**Category:** Science

**Page:** 392

**View:** 2084

Scattering is one of the most powerful methods used to study the structure of matter, and many of the most important breakthroughs in physics have been made by means of scattering. Nearly a century has passed since the first investigations in this field, and the work undertaken since then has resulted in a rich literature encompassing both experimental and theoretical results. In scattering, one customarily studies collisions among nuclear, sub-nuclear, atomic or molecular particles, and as these are intrinsically quantum systems, it is logical that quantum mechanics is used as the basis for modern scattering theory. In Principles of Quantum Scattering Theory, the author judiciously combines physical intuition and mathematical rigour to present various selected principles of quantum scattering theory. As always in physics, experiment should be used to ultimately validate physical and mathematical modelling, and the author presents a number of exemplary illustrations, comparing theoretical and experimental cross sections in a selection of major inelastic ion-atom collisions at high non-relativistic energies. Quantum scattering theory, one of the most beautiful theories in physics, is also very rich in mathematics. Principles of Quantum Scattering Theory is intended primarily for graduate physics students, but also for non-specialist physicists for whom the clarity of exposition should aid comprehension of these mathematical complexities.

**Author**: Jens Als-Nielsen,Des McMorrow

**Publisher:** John Wiley & Sons

**ISBN:** 9781119970156

**Category:** Science

**Page:** 432

**View:** 9337

Eagerly awaited, this second edition of a best-selling text comprehensively describes from a modern perspective the basics of x-ray physics as well as the completely new opportunities offered by synchrotron radiation. Written by internationally acclaimed authors, the style of the book is to develop the basic physical principles without obscuring them with excessive mathematics. The second edition differs substantially from the first edition, with over 30% new material, including: A new chapter on non-crystalline diffraction - designed to appeal to the large community who study the structure of liquids, glasses, and most importantly polymers and bio-molecules A new chapter on x-ray imaging - developed in close cooperation with many of the leading experts in the field Two new chapters covering non-crystalline diffraction and imaging Many important changes to various sections in the book have been made with a view to improving the exposition Four-colour representation throughout the text to clarify key concepts Extensive problems after each chapter There is also supplementary book material for this title available online (http://booksupport.wiley.com). Praise for the previous edition: “The publication of Jens Als-Nielsen and Des McMorrow’s Elements of Modern X-ray Physics is a defining moment in the field of synchrotron radiation… a welcome addition to the bookshelves of synchrotron–radiation professionals and students alike.... The text is now my personal choice for teaching x-ray physics…” – Physics Today, 2002
*International Series of Monographs In Natural Philosophy*

**Author**: Yu. V. Novozhilov

**Publisher:** Elsevier

**ISBN:** 1483187314

**Category:** Science

**Page:** 400

**View:** 5741

Introduction to Elementary Particle Theory details the fundamental concepts and basic principles of the theory of elementary particles. The title emphasizes on the phenomenological foundations of relativistic theory and to the strong interactions from the S-matrix standpoint. The text first covers the basic description of elementary particles, and then proceeds to tackling relativistic quantum mechanics and kinematics. Next the selection deals with the problem of internal symmetry. In the last part, the title details the elements of dynamical theory. The book will be of great use to students and researchers in the field of particle physics.

Full PDF Download Free

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy