Handbook of Discrete and Combinatorial Mathematics


Author: Kenneth H. Rosen
Publisher: CRC Press
ISBN: 135164405X
Category: Mathematics
Page: 1612
View: 4619

Continue Reading →

Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.

Discrete Mathematics with Applications


Author: Susanna S. Epp
Publisher: Cengage Learning
ISBN: 0495391328
Category: Mathematics
Page: 984
View: 4408

Continue Reading →

Susanna Epp's DISCRETE MATHEMATICS WITH APPLICATIONS, FOURTH EDITION provides a clear introduction to discrete mathematics. Renowned for her lucid, accessible prose, Epp explains complex, abstract concepts with clarity and precision. This book presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography, and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to the science and technology of the computer age. Overall, Epp's emphasis on reasoning provides students with a strong foundation for computer science and upper-level mathematics courses. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Graph Theory and Its Applications, Second Edition


Author: Jonathan L. Gross,Jay Yellen
Publisher: CRC Press
ISBN: 158488505X
Category: Mathematics
Page: 800
View: 7216

Continue Reading →

Already an international bestseller, with the release of this greatly enhanced second edition, Graph Theory and Its Applications is now an even better choice as a textbook for a variety of courses -- a textbook that will continue to serve your students as a reference for years to come. The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine. What else is new? New chapters on measurement and analytic graph theory Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing. Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.

Discrete Mathematics

Elementary and Beyond
Author: László Lovász,József Pelikán,Katalin Vesztergombi
Publisher: Springer Science & Business Media
ISBN: 0387217770
Category: Mathematics
Page: 284
View: 7151

Continue Reading →

Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.

Handbook of Discrete and Computational Geometry, Third Edition


Author: Csaba D. Toth,Joseph O'Rourke,Jacob E. Goodman
Publisher: CRC Press
ISBN: 1351645919
Category: Computers
Page: 1928
View: 6757

Continue Reading →

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in ?elds as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed signi?cantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young ?eld of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Handbook of Applied Cryptography


Author: Alfred J. Menezes,Paul C. van Oorschot,Scott A. Vanstone
Publisher: CRC Press
ISBN: 1439821917
Category: Mathematics
Page: 810
View: 1379

Continue Reading →

Cryptography, in particular public-key cryptography, has emerged in the last 20 years as an important discipline that is not only the subject of an enormous amount of research, but provides the foundation for information security in many applications. Standards are emerging to meet the demands for cryptographic protection in most areas of data communications. Public-key cryptographic techniques are now in widespread use, especially in the financial services industry, in the public sector, and by individuals for their personal privacy, such as in electronic mail. This Handbook will serve as a valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography. It is a necessary and timely guide for professionals who practice the art of cryptography. The Handbook of Applied Cryptography provides a treatment that is multifunctional: It serves as an introduction to the more practical aspects of both conventional and public-key cryptography It is a valuable source of the latest techniques and algorithms for the serious practitioner It provides an integrated treatment of the field, while still presenting each major topic as a self-contained unit It provides a mathematical treatment to accompany practical discussions It contains enough abstraction to be a valuable reference for theoreticians while containing enough detail to actually allow implementation of the algorithms discussed Now in its third printing, this is the definitive cryptography reference that the novice as well as experienced developers, designers, researchers, engineers, computer scientists, and mathematicians alike will use.

Discrete Mathematics with Ducks


Author: sarah-marie belcastro
Publisher: CRC Press
ISBN: 1466504994
Category: Computers
Page: 580
View: 7137

Continue Reading →

Containing exercises and materials that engage students at all levels, Discrete Mathematics with Ducks presents a gentle introduction for students who find the proofs and abstractions of mathematics challenging. This classroom-tested text uses discrete mathematics as the context for introducing proofwriting. Facilitating effective and active learning, each chapter contains a mixture of discovery activities, expository text, in-class exercises, and homework problems. Elementary exercises at the end of each expository section prompt students to review the material Try This! sections encourage students to construct fundamental components of the concepts, theorems, and proofs discussed. Sets of discovery problems and illustrative examples reinforce learning. Bonus sections can be used for take-home exams, projects, or further study Instructor Notes sections offer suggestions on how to use the material in each chapter Discrete Mathematics with Ducks offers students a diverse introduction to the field and a solid foundation for further study in discrete mathematics and complies with SIGCSE guidelines. The book shows how combinatorics and graph theory are used in both computer science and mathematics.

Introduction to Mathematical Logic, Fourth Edition


Author: Elliott Mendelson
Publisher: CRC Press
ISBN: 9780412808302
Category: Mathematics
Page: 440
View: 9198

Continue Reading →

The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic. This edition includes an extensive appendix on second-order logic, a section on set theory with urlements, and a section on the logic that results when we allow models with empty domains. The text contains numerous exercises and an appendix furnishes answers to many of them. Introduction to Mathematical Logic includes: propositional logic first-order logic first-order number theory and the incompleteness and undecidability theorems of Gödel, Rosser, Church, and Tarski axiomatic set theory theory of computability The study of mathematical logic, axiomatic set theory, and computability theory provides an understanding of the fundamental assumptions and proof techniques that form basis of mathematics. Logic and computability theory have also become indispensable tools in theoretical computer science, including artificial intelligence. Introduction to Mathematical Logic covers these topics in a clear, reader-friendly style that will be valued by anyone working in computer science as well as lecturers and researchers in mathematics, philosophy, and related fields.

Discrete Structures and Their Interactions


Author: Jason I. Brown
Publisher: CRC Press
ISBN: 1466579420
Category: Computers
Page: 224
View: 5436

Continue Reading →

Discover the Connections between Different Structures and Fields Discrete Structures and Their Interactions highlights the connections among various discrete structures, including graphs, directed graphs, hypergraphs, partial orders, finite topologies, and simplicial complexes. It also explores their relationships to classical areas of mathematics, such as linear and multilinear algebra, analysis, probability, logic, and topology. The text introduces a number of discrete structures, such as hypergraphs, finite topologies, preorders, simplicial complexes, and order ideals of monomials, that most graduate students in combinatorics, and even some researchers in the field, seldom experience. The author explains how these structures have important applications in many areas inside and outside of combinatorics. He also discusses how to recognize valuable research connections through the structures. Intended for graduate and upper-level undergraduate students in mathematics who have taken an initial course in discrete mathematics or graph theory, this book shows how discrete structures offer new insights into the classical fields of mathematics. It illustrates how to use discrete structures to represent the salient features and discover the underlying combinatorial principles of seemingly unrelated areas of mathematics.

Elliptic Curves

Number Theory and Cryptography, Second Edition
Author: Lawrence C. Washington
Publisher: CRC Press
ISBN: 9781420071474
Category: Mathematics
Page: 536
View: 3366

Continue Reading →

Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and applications of elliptic curves. New to the Second Edition Chapters on isogenies and hyperelliptic curves A discussion of alternative coordinate systems, such as projective, Jacobian, and Edwards coordinates, along with related computational issues A more complete treatment of the Weil and Tate–Lichtenbaum pairings Doud’s analytic method for computing torsion on elliptic curves over Q An explanation of how to perform calculations with elliptic curves in several popular computer algebra systems Taking a basic approach to elliptic curves, this accessible book prepares readers to tackle more advanced problems in the field. It introduces elliptic curves over finite fields early in the text, before moving on to interesting applications, such as cryptography, factoring, and primality testing. The book also discusses the use of elliptic curves in Fermat’s Last Theorem. Relevant abstract algebra material on group theory and fields can be found in the appendices.

Graphs, Algorithms, and Optimization


Author: William Kocay,Donald L. Kreher
Publisher: CRC Press
ISBN: 135198912X
Category: Mathematics
Page: 504
View: 4988

Continue Reading →

Graph theory offers a rich source of problems and techniques for programming and data structure development, as well as for understanding computing theory, including NP-Completeness and polynomial reduction. A comprehensive text, Graphs, Algorithms, and Optimization features clear exposition on modern algorithmic graph theory presented in a rigorous yet approachable way. The book covers major areas of graph theory including discrete optimization and its connection to graph algorithms. The authors explore surface topology from an intuitive point of view and include detailed discussions on linear programming that emphasize graph theory problems useful in mathematics and computer science. Many algorithms are provided along with the data structure needed to program the algorithms efficiently. The book also provides coverage on algorithm complexity and efficiency, NP-completeness, linear optimization, and linear programming and its relationship to graph algorithms. Written in an accessible and informal style, this work covers nearly all areas of graph theory. Graphs, Algorithms, and Optimization provides a modern discussion of graph theory applicable to mathematics, computer science, and crossover applications.

A Combinatorial Approach to Matrix Theory and Its Applications


Author: Richard A. Brualdi,Dragos Cvetkovic
Publisher: CRC Press
ISBN: 9781420082241
Category: Mathematics
Page: 288
View: 5150

Continue Reading →

Unlike most elementary books on matrices, A Combinatorial Approach to Matrix Theory and Its Applications employs combinatorial and graph-theoretical tools to develop basic theorems of matrix theory, shedding new light on the subject by exploring the connections of these tools to matrices. After reviewing the basics of graph theory, elementary counting formulas, fields, and vector spaces, the book explains the algebra of matrices and uses the König digraph to carry out simple matrix operations. It then discusses matrix powers, provides a graph-theoretical definition of the determinant using the Coates digraph of a matrix, and presents a graph-theoretical interpretation of matrix inverses. The authors develop the elementary theory of solutions of systems of linear equations and show how to use the Coates digraph to solve a linear system. They also explore the eigenvalues, eigenvectors, and characteristic polynomial of a matrix; examine the important properties of nonnegative matrices that are part of the Perron–Frobenius theory; and study eigenvalue inclusion regions and sign-nonsingular matrices. The final chapter presents applications to electrical engineering, physics, and chemistry. Using combinatorial and graph-theoretical tools, this book enables a solid understanding of the fundamentals of matrix theory and its application to scientific areas.

Discrete Mathematics

Proofs, Structures and Applications, Third Edition
Author: Rowan Garnier,John Taylor
Publisher: Taylor & Francis
ISBN: 1439812810
Category: Mathematics
Page: 843
View: 6919

Continue Reading →

Taking an approach to the subject that is suitable for a broad readership, Discrete Mathematics: Proofs, Structures, and Applications, Third Edition provides a rigorous yet accessible exposition of discrete mathematics, including the core mathematical foundation of computer science. The approach is comprehensive yet maintains an easy-to-follow progression from the basic mathematical ideas to the more sophisticated concepts examined later in the book. This edition preserves the philosophy of its predecessors while updating and revising some of the content. New to the Third Edition In the expanded first chapter, the text includes a new section on the formal proof of the validity of arguments in propositional logic before moving on to predicate logic. This edition also contains a new chapter on elementary number theory and congruences. This chapter explores groups that arise in modular arithmetic and RSA encryption, a widely used public key encryption scheme that enables practical and secure means of encrypting data. This third edition also offers a detailed solutions manual for qualifying instructors. Exploring the relationship between mathematics and computer science, this text continues to provide a secure grounding in the theory of discrete mathematics and to augment the theoretical foundation with salient applications. It is designed to help readers develop the rigorous logical thinking required to adapt to the demands of the ever-evolving discipline of computer science.

R Programming and Its Applications in Financial Mathematics


Author: Shuichi Ohsaki,Jori Ruppert-Felsot,Daisuke Yoshikawa
Publisher: CRC Press
ISBN: 1351649868
Category: Business & Economics
Page: 248
View: 7612

Continue Reading →

This book provides an introduction to R programming and a summary of financial mathematics. It is not always easy for graduate students to grasp an overview of the theory of finance in an abstract form. For newcomers to the finance industry, it is not always obvious how to apply the abstract theory to the real financial data they encounter. Introducing finance theory alongside numerical applications makes it easier to grasp the subject. Popular programming languages like C++, which are used in many financial applications are meant for general-purpose requirements. They are good for implementing large-scale distributed systems for simultaneously valuing many financial contracts, but they are not as suitable for small-scale ad-hoc analysis or exploration of financial data. The R programming language overcomes this problem. R can be used for numerical applications including statistical analysis, time series analysis, numerical methods for pricing financial contracts, etc. This book provides an overview of financial mathematics with numerous examples numerically illustrated using the R programming language.

Combinatorial Algorithms

Generation, Enumeration, and Search
Author: Donald L. Kreher,Douglas R. Stinson
Publisher: CRC Press
ISBN: 9780849339882
Category: Mathematics
Page: 344
View: 7844

Continue Reading →

This textbook thoroughly outlines combinatorial algorithms for generation, enumeration, and search. Topics include backtracking and heuristic search methods applied to various combinatorial structures, such as: Combinations Permutations Graphs Designs Many classical areas are covered as well as new research topics not included in most existing texts, such as: Group algorithms Graph isomorphism Hill-climbing Heuristic search algorithms This work serves as an exceptional textbook for a modern course in combinatorial algorithms, providing a unified and focused collection of recent topics of interest in the area. The authors, synthesizing material that can only be found scattered through many different sources, introduce the most important combinatorial algorithmic techniques - thus creating an accessible, comprehensive text that students of mathematics, electrical engineering, and computer science can understand without needing a prior course on combinatorics.

Pearls of Discrete Mathematics


Author: Martin Erickson
Publisher: CRC Press
ISBN: 1439816174
Category: Computers
Page: 280
View: 6885

Continue Reading →

Methods Used to Solve Discrete Math Problems Interesting examples highlight the interdisciplinary nature of this area Pearls of Discrete Mathematics presents methods for solving counting problems and other types of problems that involve discrete structures. Through intriguing examples, problems, theorems, and proofs, the book illustrates the relationship of these structures to algebra, geometry, number theory, and combinatorics. Each chapter begins with a mathematical teaser to engage readers and includes a particularly surprising, stunning, elegant, or unusual result. The author covers the upward extension of Pascal’s triangle, a recurrence relation for powers of Fibonacci numbers, ways to make change for a million dollars, integer triangles, the period of Alcuin’s sequence, and Rook and Queen paths and the equivalent Nim and Wythoff’s Nim games. He also examines the probability of a perfect bridge hand, random tournaments, a Fibonacci-like sequence of composite numbers, Shannon’s theorems of information theory, higher-dimensional tic-tac-toe, animal achievement and avoidance games, and an algorithm for solving Sudoku puzzles and polycube packing problems. Exercises ranging from easy to challenging are found in each chapter while hints and solutions are provided in an appendix. With over twenty-five years of teaching experience, the author takes an organic approach that explores concrete problems, introduces theory, and adds generalizations as needed. He delivers an absorbing treatment of the basic principles of discrete mathematics.