**Author**: Kristopher Tapp

**Publisher:**Springer

**ISBN:**3319397990

**Category:**Mathematics

**Page:**366

**View:**1564

Skip to content
# Search Results for: differential-geometry-of-curves-and-surfaces-undergraduate-texts-in-mathematics

**Author**: Kristopher Tapp

**Publisher:** Springer

**ISBN:** 3319397990

**Category:** Mathematics

**Page:** 366

**View:** 1564

This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.

**Author**: Manfredo P. do Carmo

**Publisher:** Springer-Verlag

**ISBN:** 3322850722

**Category:** Technology & Engineering

**Page:** 263

**View:** 6529

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang
*Kurven - Flächen - Mannigfaltigkeiten*

**Author**: Wolfgang Kühnel

**Publisher:** Springer-Verlag

**ISBN:** 3834896551

**Category:** Mathematics

**Page:** 280

**View:** 4167

Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.
*Revised and Updated Second Edition*

**Author**: Manfredo P. do Carmo

**Publisher:** Courier Dover Publications

**ISBN:** 0486806995

**Category:** Mathematics

**Page:** 512

**View:** 1232

One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.

**Author**: Tristan Needham

**Publisher:** Oldenbourg Wissenschaftsverlag

**ISBN:** 9783486709025

**Category:** Mathematics

**Page:** 685

**View:** 6905

Needhams neuartiger Zugang zur Funktionentheorie wurde von der Fachpresse begeistert aufgenommen. Mit über 500 zum großen Teil perspektivischen Grafiken vermittelt er im wahrsten Sinne des Wortes eine Anschauung von der sonst oft als trocken empfundenen Funktionentheorie. 'Anschauliche Funktionentheorie ist eine wahre Freude und ein Buch so recht nach meinem Herzen. Indem er ausschließlich seine neuartige geometrische Perspektive verwendet, enthüllt Tristan Needham viele überraschende und bisher weitgehend unbeachtete Facetten der Schönheit der Funktionentheorie.' (Sir Roger Penrose)

**Author**: Thomas F. Banchoff,Stephen T. Lovett

**Publisher:** CRC Press

**ISBN:** 1482247372

**Category:** Mathematics

**Page:** 414

**View:** 8267

Differential Geometry of Curves and Surfaces, Second Edition takes both an analytical/theoretical approach and a visual/intuitive approach to the local and global properties of curves and surfaces. Requiring only multivariable calculus and linear algebra, it develops students’ geometric intuition through interactive computer graphics applets supported by sound theory. The book explains the reasons for various definitions while the interactive applets offer motivation for certain definitions, allow students to explore examples further, and give a visual explanation of complicated theorems. The ability to change parametric curves and parametrized surfaces in an applet lets students probe the concepts far beyond what static text permits. New to the Second Edition Reworked presentation to make it more approachable More exercises, both introductory and advanced New section on the application of differential geometry to cartography Additional investigative project ideas Significantly reorganized material on the Gauss–Bonnet theorem Two new sections dedicated to hyperbolic and spherical geometry as applications of intrinsic geometry A new chapter on curves and surfaces in Rn Suitable for an undergraduate-level course or self-study, this self-contained textbook and online software applets provide students with a rigorous yet intuitive introduction to the field of differential geometry. The text gives a detailed introduction of definitions, theorems, and proofs and includes many types of exercises appropriate for daily or weekly assignments. The applets can be used for computer labs, in-class illustrations, exploratory exercises, or self-study aids.

**Author**: J. A. Thorpe

**Publisher:** Springer Science & Business Media

**ISBN:** 1461261538

**Category:** Mathematics

**Page:** 256

**View:** 1173

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.
*A Concise Guide*

**Author**: Victor Andreevich Toponogov

**Publisher:** Springer Science & Business Media

**ISBN:** 0817644024

**Category:** Mathematics

**Page:** 206

**View:** 995

Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels

**Author**: A.N. Pressley

**Publisher:** Springer Science & Business Media

**ISBN:** 1848828918

**Category:** Mathematics

**Page:** 474

**View:** 7129

Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul

**Author**: Dirk Jan Struik

**Publisher:** Courier Corporation

**ISBN:** 9780486656090

**Category:** Mathematics

**Page:** 232

**View:** 2147

Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.

**Author**: Andrew Pressley

**Publisher:** Springer Science & Business Media

**ISBN:** 9781852331528

**Category:** Mathematics

**Page:** 332

**View:** 2488

Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood. Differential geometry is concerned with the precise mathematical formulation of some of these questions, and with trying to answer them using calculus techniques. It is a subject that contains some of the most beautiful and profound results in mathematics, yet many of them are accessible to higher level undergraduates.Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces while keeping the prerequisites to an absolute minimum. Nothing more than first courses in linear algebra and multivariate calculus are required, and the most direct and straightforward approach is used at all times. Numerous diagrams illustrate both the ideas in the text and the examples of curves and surfaces discussed there.The second edition has extra exercises with solutions available to lecturers online. There is additional material on Map Colouring, Holonomy and geodesic curvature and various additions to existing sections.

**Author**: Christian Bär

**Publisher:** Walter de Gruyter

**ISBN:** 3110224593

**Category:** Mathematics

**Page:** 356

**View:** 8015

This textbook presents an introduction to the differential geometry of curves and surfaces. This second, revised edition has been expanded to include solutions and applications in cartography. Topics include Euclidean geometry, curve theory, surface theory, curvature concepts, minimal surfaces, Riemann geometry and the Gauss-Bonnet theorem.

**Author**: Sebastián Montiel,Antonio Ros,Donald G. Babbitt

**Publisher:** American Mathematical Soc.

**ISBN:** 0821847635

**Category:** Mathematics

**Page:** 376

**View:** 1371

This introductory textbook puts forth a clear and focused point of view on the differential geometry of curves and surfaces. Following the modern point of view on differential geometry, the book emphasizes the global aspects of the subject. The excellent collection of examples and exercises (with hints) will help students in learning the material. Advanced undergraduates and graduate students will find this a nice entry point to differential geometry. In order to study the global properties of curves and surfaces, it is necessary to have more sophisticated tools than are usually found in textbooks on the topic. In particular, students must have a firm grasp on certain topological theories. Indeed, this monograph treats the Gauss-Bonnet theorem and discusses the Euler characteristic. The authors also cover Alexandrov's theorem on embedded compact surfaces in $\mathbb{R}^3$ with constant mean curvature. The last chapter addresses the global geometry of curves, including periodic space curves and the four-vertices theorem for plane curves that are not necessarily convex. Besides being an introduction to the lively subject of curves and surfaces, this book can also be used as an entry to a wider study of differential geometry. It is suitable as the text for a first-year graduate course or an advanced undergraduate course.
*Curves - Surfaces - Manifolds*

**Author**: Wolfgang Kühnel

**Publisher:** American Mathematical Soc.

**ISBN:** 9780821839881

**Category:** Mathematics

**Page:** 380

**View:** 9106

Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.
*Eine praktische Einführung*

**Author**: Gerald Farin

**Publisher:** Springer-Verlag

**ISBN:** 3663106020

**Category:** Technology & Engineering

**Page:** 365

**View:** 5284

Computer Aided Geometric Design (CAGD) stellt die mathematischen Grundlagen für das in der Technik weitverbreitete CAD bereit. Vorlesungen zu diesem Themenbereich gehören heute an allen technisch orientierten Universitäten und Fachhochschulen zum Standard-Angebot. Das Buch liefert eine an der Praxis orientierte, dabei aber mathematisch exakte Einführung und führt den Leser bis an neueste Entwicklungen des Gebietes heran. Aus Besprechungen der amerikanischen Auflage: "Altogether, this book gives a solid introduction to CAGD methods, points out their advantages and disadvantages, can function as a reference book for programmers in CAGD, and is a perfect textbook."

**Author**: John McCleary

**Publisher:** Cambridge University Press

**ISBN:** 9780521424806

**Category:** Mathematics

**Page:** 308

**View:** 6341

This book offers a new treatment of the topic, one which is designed to make differential geometry an approachable subject for advanced undergraduates. Professor McCleary considers the historical development of non-Euclidean geometry, placing differential geometry in the context of geometry students will be familiar with from high school. The text serves as both an introduction to the classical differential geometry of curves and surfaces and as a history of a particular surface, the non-Euclidean or hyperbolic plane. The main theorems of non-Euclidean geometry are presented along with their historical development. The author then introduces the methods of differential geometry and develops them toward the goal of constructing models of the hyperbolic plane. While interesting diversions are offered, such as Huygen's pendulum clock and mathematical cartography, the book thoroughly treats the models of non-Euclidean geometry and the modern ideas of abstract surfaces and manifolds.

**Author**: T. J. Willmore

**Publisher:** Courier Corporation

**ISBN:** 0486282104

**Category:** Mathematics

**Page:** 336

**View:** 3513

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

**Author**: Alfred Gray

**Publisher:** Lewis Pub

**ISBN:** N.A

**Category:** Mathematics

**Page:** 664

**View:** 2148

This is the first advanced text/reference to explain the mathematics of curves and surfaces and describe how to draw the pictures illustrating them using Mathematica. Learn not only the classical concepts, ideas, and methods of differential geometry, but also how to define, construct, and compute standard functions. Also learn how to create new curves and surfaces from old ones. Material includes 150+ exercises, 175 Mathematica programs, and 225 geometric figures to develop the topics presented. A tutorial explaining how to use Mathematica in differential geometry is included as well. This text/reference is excellent for mathematicians, scientists, and engineers who use differential geometric methods and investigate geometrical structures.
*Riemannian, Contact, Symplectic*

**Author**: Andrew McInerney

**Publisher:** Springer Science & Business Media

**ISBN:** 1461477328

**Category:** Mathematics

**Page:** 410

**View:** 6970

Differential geometry arguably offers the smoothest transition from the standard university mathematics sequence of the first four semesters in calculus, linear algebra, and differential equations to the higher levels of abstraction and proof encountered at the upper division by mathematics majors. Today it is possible to describe differential geometry as "the study of structures on the tangent space," and this text develops this point of view. This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to explore those consequences.

**Author**: Vladimir Rovenski

**Publisher:** Springer Science & Business Media

**ISBN:** 0387712771

**Category:** Mathematics

**Page:** 452

**View:** 9723

This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.

Full PDF Download Free

Privacy Policy

Copyright © 2019 Download PDF Site — Primer WordPress theme by GoDaddy