Differential Equations

Linear, Nonlinear, Ordinary, Partial
Author: A. C. King,J. Billingham,S. R. Otto
Publisher: Cambridge University Press
ISBN: 9780521016872
Category: Mathematics
Page: 541
View: 872

Continue Reading →

For students taking second courses; the subject is central and required at second year and above.

From Ordinary to Partial Differential Equations


Author: Giampiero Esposito
Publisher: Springer
ISBN: 3319575449
Category: Mathematics
Page: 432
View: 4797

Continue Reading →

This book is addressed to mathematics and physics students who want to develop an interdisciplinary view of mathematics, from the age of Riemann, Poincaré and Darboux to basic tools of modern mathematics. It enables them to acquire the sensibility necessary for the formulation and solution of difficult problems, with an emphasis on concepts, rigour and creativity. It consists of eight self-contained parts: ordinary differential equations; linear elliptic equations; calculus of variations; linear and non-linear hyperbolic equations; parabolic equations; Fuchsian functions and non-linear equations; the functional equations of number theory; pseudo-differential operators and pseudo-differential equations. The author leads readers through the original papers and introduces new concepts, with a selection of topics and examples that are of high pedagogical value.

Handbook of Differential Equations


Author: Daniel Zwillinger
Publisher: Academic Press
ISBN: 1483220966
Category: Mathematics
Page: 694
View: 3862

Continue Reading →

Handbook of Differential Equations is a handy reference to many popular techniques for solving and approximating differential equations, including exact analytical methods, approximate analytical methods, and numerical methods. Topics covered range from transformations and constant coefficient linear equations to finite and infinite intervals, along with conformal mappings and the perturbation method. Comprised of 180 chapters, this book begins with an introduction to transformations as well as general ideas about differential equations and how they are solved, together with the techniques needed to determine if a partial differential equation is well-posed or what the "natural" boundary conditions are. Subsequent sections focus on exact and approximate analytical solution techniques for differential equations, along with numerical methods for ordinary and partial differential equations. This monograph is intended for students taking courses in differential equations at either the undergraduate or graduate level, and should also be useful for practicing engineers or scientists who solve differential equations on an occasional basis.

Nonlinear Partial Differential Equations for Scientists and Engineers


Author: Lokenath Debnath
Publisher: Springer Science & Business Media
ISBN: 9780817682651
Category: Mathematics
Page: 860
View: 3819

Continue Reading →

The revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, improves on an already highly complete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide.

The Numerical Solution of Ordinary and Partial Differential Equations


Author: Granville Sewell
Publisher: World Scientific
ISBN: 9814635111
Category: Mathematics
Page: 348
View: 7673

Continue Reading →

This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland

A Practical Course in Differential Equations and Mathematical Modelling

Classical and New Methods, Nonlinear Mathematical Models, Symmetry and Invariance Principles
Author: Nail H. Ibragimov,Nail? Kha?rullovich Ibragimov
Publisher: World Scientific
ISBN: 9814291951
Category: Mathematics
Page: 348
View: 5715

Continue Reading →

A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author?s own theoretical developments. The book ? which aims to present new mathematical curricula based on symmetry and invariance principles ? is tailored to develop analytic skills and ?working knowledge? in both classical and Lie?s methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author?s extensive teaching experience at Novosibirsk and Moscow universities in Russia, CollŠge de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics.

Handbook of Nonlinear Partial Differential Equations, Second Edition


Author: Andrei D. Polyanin,Valentin F. Zaitsev
Publisher: CRC Press
ISBN: 142008724X
Category: Mathematics
Page: 1912
View: 7723

Continue Reading →

New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with MapleTM, Mathematica®, and MATLAB® Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They outline the methods in a schematic, simplified manner and arrange the material in increasing order of complexity.

Green’s Functions and Linear Differential Equations

Theory, Applications, and Computation
Author: Prem K. Kythe
Publisher: CRC Press
ISBN: 1439840091
Category: Mathematics
Page: 382
View: 2739

Continue Reading →

Green’s Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green’s function method, which is used to solve initial and boundary value problems involving linear ODEs and PDEs. It also contains a large number of examples and exercises from diverse areas of mathematics, applied science, and engineering. Taking a direct approach, the book first unravels the mystery of the Dirac delta function and then explains its relationship to Green’s functions. The remainder of the text explores the development of Green’s functions and their use in solving linear ODEs and PDEs. The author discusses how to apply various approaches to solve initial and boundary value problems, including classical and general variations of parameters, Wronskian method, Bernoulli’s separation method, integral transform method, method of images, conformal mapping method, and interpolation method. He also covers applications of Green’s functions, including spherical and surface harmonics. Filled with worked examples and exercises, this robust, self-contained text fully explains the differential equation problems, includes graphical representations where necessary, and provides relevant background material. It is mathematically rigorous yet accessible enough for readers to grasp the beauty and power of the subject.

An Introduction to Nonlinear Partial Differential Equations


Author: J. David Logan
Publisher: John Wiley & Sons
ISBN: 0470225955
Category: Mathematics
Page: 397
View: 2608

Continue Reading →

An Introduction to Nonlinear Partial Differential Equations is a textbook on nonlinear partial differential equations. It is technique oriented with an emphasis on applications and is designed to build a foundation for studying advanced treatises in the field. The Second Edition features an updated bibliography as well as an increase in the number of exercises. All software references have been updated with the latest version of [email protected], the corresponding graphics have also been updated using [email protected] An increased focus on hydrogeology...

Transformation Methods for Nonlinear Partial Differential Equations


Author: Dominic G. B. Edelen,Jian-hua Wang
Publisher: World Scientific
ISBN: 9789810209339
Category: Mathematics
Page: 325
View: 8113

Continue Reading →

The purpose of the book is to provide research workers in applied mathematics, physics, and engineering with practical geometric methods for solving systems of nonlinear partial differential equations. The first two chapters provide an introduction to the more or less classical results of Lie dealing with symmetries and similarity solutions. The results, however, are presented in the context of contact manifolds rather than the usual jet bundle formulation and provide a number of new conclusions. The remaining three chapters present essentially new methods of solution that are based on recent publications of the authors'. The text contains numerous fully worked examples so that the reader can fully appreciate the power and scope of the new methods. In effect, the problem of solving systems of nonlinear partial differential equations is reduced to the problem of solving families of autonomous ordinary differential equations. This allows the graphs of solutions of the system of partial differential equations to be realized as certain leaves of a foliation of an appropriately defined contact manifold. In fact, it is often possible to obtain families of solutions whose graphs foliate an open subset of the contact manifold. These ideas are extended in the final chapter by developing the theory of transformations that map a foliation of a contact manifold onto a foliation. This analysis gives rise to results of surprising depth and practical significance. In particular, an extended Hamilton-Jacobi method for solving systems of partial differential equations is obtained.

Linear Partial Differential Equations for Scientists and Engineers


Author: Tyn Myint-U,Lokenath Debnath
Publisher: Springer Science & Business Media
ISBN: 9780817645601
Category: Mathematics
Page: 778
View: 1284

Continue Reading →

This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.

Nonlinear Ordinary Differential Equations

An Introduction for Scientists and Engineers
Author: Dominic Jordan,Peter Smith
Publisher: Oxford University Press on Demand
ISBN: 0199208247
Category: Mathematics
Page: 531
View: 2730

Continue Reading →

Thoroughly updated and expanded 4th edition of the classic text, including numerous worked examples, diagrams and exercises. An ideal resource for students and lecturers in engineering, mathematics and the sciences it is published alongside a separate Problems and Solutions Sourcebook containing over 500 problems and fully-worked solutions.

Ordinary Differential Equations

A Practical Guide
Author: Bernd J. Schroers
Publisher: Cambridge University Press
ISBN: 1139503723
Category: Mathematics
Page: N.A
View: 5643

Continue Reading →

Ordinary Differential Equations introduces key concepts and techniques in the field and shows how they are used in current mathematical research and modelling. It deals specifically with initial value problems, which play a fundamental role in a wide range of scientific disciplines, including mathematics, physics, computer science, statistics and biology. This practical book is ideal for students and beginning researchers working in any of these fields who need to understand the area of ordinary differential equations in a short time.

Nonlinear Ordinary Differential Equations

Analytical Approximation and Numerical Methods
Author: Martin Hermann,Masoud Saravi
Publisher: Springer
ISBN: 813222812X
Category: Mathematics
Page: 310
View: 8869

Continue Reading →

The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.

Recent Advances in Differential Equations


Author: Roberto Conti
Publisher: Elsevier
ISBN: 1483273911
Category: Mathematics
Page: 462
View: 2410

Continue Reading →

Recent Advances in Differential Equations contains the proceedings of a meeting held at the International Center for Theoretical Physics in Trieste, Italy, on August 24-28, 1978 under the auspices of the U.S. Army Research Office. The papers review the status of research in the field of differential equations (ordinary, partial, and functional). Both theoretical aspects (differential operators, periodic solutions, stability and bifurcation, asymptotic behavior of solutions, etc.) and problems arising from applications (reaction-diffusion equations, control problems, heat flow, etc.) are discussed. Comprised of 33 chapters, this book first examines non-cooperative trajectories of n-person dynamical games and stable non-cooperative equilibria, followed by a discussion on the determination and application of Vekua resolvents. The reader is then introduced to generalized Hopf bifurcation; some Cauchy problems arising in computational methods; and boundary value problems for pairs of ordinary differential operators. Subsequent chapters focus on degenerate evolution equations and singular optimal control; stability of neutral functional differential equations; local exact controllability of nonlinear evolution equations; and turbulence and higher order bifurcations. This monograph will be of interest to students and practitioners in the field of mathematics.

Nonlinear Partial Differential Equations

A Symposium on Methods of Solution
Author: W. F. Ames
Publisher: Academic Press
ISBN: 1483221504
Category: Mathematics
Page: 332
View: 3503

Continue Reading →

Nonlinear Partial Differential Equations: A Symposium on Methods of Solution is a collection of papers presented at the seminar on methods of solution for nonlinear partial differential equations, held at the University of Delaware, Newark, Delaware on December 27-29, 1965. The sessions are divided into four Symposia: Analytic Methods, Approximate Methods, Numerical Methods, and Applications. Separating 19 lectures into chapters, this book starts with a presentation of the methods of similarity analysis, particularly considering the merits, advantages and disadvantages of the methods. The subsequent chapters describe the fundamental ideas behind the methods for the solution of partial differential equation derived from the theory of dynamic programming and from finite systems of ordinary differential equations. These topics are followed by reviews of the principles to the lubrication approximation and compressible boundary-layer flow computation. The discussion then shifts to several applications of nonlinear partial differential equations, including in electrical problems, two-phase flow, hydrodynamics, and heat transfer. The remaining chapters cover other solution methods for partial differential equations, such as the synergetic approach. This book will prove useful to applied mathematicians, physicists, and engineers.

ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

THEORY AND APPLICATIONS
Author: NITA H. SHAH
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120350871
Category: Mathematics
Page: 528
View: 4216

Continue Reading →

This revised and updated text, now in its second edition, continues to present the theoretical concepts of methods of solutions of ordinary and partial differential equations. It equips students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of ordinary and partial differential equations. It contains different methods of solving ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The text elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel’s and Legendre’s equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics. New to the SECOND Edition • Includes new sections and subsections such as applications of differential equations, special substitution (Lagrange and Riccati), solutions of non-linear equations which are exact, method of variation of parameters for linear equations of order higher than two, and method of undetermined coefficients • Incorporates several worked-out examples and exercises with their answers • Contains a new Chapter 19 on ‘Z-Transforms and its Applications’.