Data Mining

Practical Machine Learning Tools and Techniques
Author: Ian H. Witten,Eibe Frank,Mark A. Hall,Christopher J. Pal
Publisher: Morgan Kaufmann
ISBN: 0128043571
Category: Computers
Page: 654
View: 4688

Continue Reading →

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at http://www.cs.waikato.ac.nz/ml/weka/book.html It contains Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface Includes open-access online courses that introduce practical applications of the material in the book

Data Mining: Concepts and Techniques


Author: Jiawei Han,Jian Pei,Micheline Kamber
Publisher: Elsevier
ISBN: 9780123814807
Category: Computers
Page: 744
View: 9761

Continue Reading →

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Data Preparation for Data Mining


Author: Dorian Pyle
Publisher: Morgan Kaufmann
ISBN: 9781558605299
Category: Computers
Page: 540
View: 6396

Continue Reading →

A guide to the importance of well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance, and provides examples of how to apply a variety of techniques in order to solve real world business problems.

Data Mining and Analysis

Fundamental Concepts and Algorithms
Author: Mohammed J. Zaki,Wagner Meira, Jr
Publisher: Cambridge University Press
ISBN: 0521766338
Category: Computers
Page: 562
View: 7830

Continue Reading →

A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.

Data Mining

Multimedia, Soft Computing, and Bioinformatics
Author: Sushmita Mitra,Tinku Acharya
Publisher: John Wiley & Sons
ISBN: 9780471474883
Category: Computers
Page: 424
View: 540

Continue Reading →

First title to ever present soft computing approaches and their application in data mining, along with the traditional hard-computing approaches Addresses the principles of multimedia data compression techniques (for image, video, text) and their role in data mining Discusses principles and classical algorithms on string matching and their role in data mining

Data Mining

Concepts, Models, Methods, and Algorithms
Author: Mehmed Kantardzic
Publisher: John Wiley & Sons
ISBN: 0470890452
Category: Computers
Page: 480
View: 9454

Continue Reading →

This book reviews state-of-the-art methodologies and techniques for analyzing enormous quantities of raw data in high-dimensional data spaces, to extract new information for decision making. The goal of this book is to provide a single introductory source, organized in a systematic way, in which we could direct the readers in analysis of large data sets, through the explanation of basic concepts, models and methodologies developed in recent decades.

Principles of Data Mining


Author: D. J. Hand,Heikki Mannila,Padhraic Smyth
Publisher: MIT Press
ISBN: 9780262082907
Category: Computers
Page: 546
View: 1005

Continue Reading →

The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics.

Data Mining For Dummies


Author: Meta S. Brown
Publisher: John Wiley & Sons
ISBN: 1118893174
Category: Computers
Page: 408
View: 3598

Continue Reading →

Offers information on how to search through large amounts of computerized business data to find useful patterns or trends, including creation and validity testing of a data model, effective communication of findings, and available tools.

Mining of Massive Datasets


Author: Jure Leskovec,Anand Rajaraman,Jeffrey David Ullman
Publisher: Cambridge University Press
ISBN: 1107077230
Category: Computers
Page: 476
View: 805

Continue Reading →

Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Learning Data Mining with Python


Author: Robert Layton
Publisher: Packt Publishing Ltd
ISBN: 178712956X
Category: Computers
Page: 358
View: 4409

Continue Reading →

Harness the power of Python to develop data mining applications, analyze data, delve into machine learning, explore object detection using Deep Neural Networks, and create insightful predictive models. About This Book Use a wide variety of Python libraries for practical data mining purposes. Learn how to find, manipulate, analyze, and visualize data using Python. Step-by-step instructions on data mining techniques with Python that have real-world applications. Who This Book Is For If you are a Python programmer who wants to get started with data mining, then this book is for you. If you are a data analyst who wants to leverage the power of Python to perform data mining efficiently, this book will also help you. No previous experience with data mining is expected. What You Will Learn Apply data mining concepts to real-world problems Predict the outcome of sports matches based on past results Determine the author of a document based on their writing style Use APIs to download datasets from social media and other online services Find and extract good features from difficult datasets Create models that solve real-world problems Design and develop data mining applications using a variety of datasets Perform object detection in images using Deep Neural Networks Find meaningful insights from your data through intuitive visualizations Compute on big data, including real-time data from the internet In Detail This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK. You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now. With restructured examples and code samples updated for the latest edition of Python, each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will have great insights into using Python for data mining and understanding of the algorithms as well as implementations. Style and approach This book will be your comprehensive guide to learning the various data mining techniques and implementing them in Python. A variety of real-world datasets is used to explain data mining techniques in a very crisp and easy to understand manner.

Business Intelligence and Data Mining


Author: Anil Maheshwari
Publisher: Business Expert Press
ISBN: 1631571214
Category: Business & Economics
Page: 162
View: 4567

Continue Reading →

“This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.

Data Mining

The Textbook
Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319141422
Category: Computers
Page: 734
View: 8650

Continue Reading →

This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago

Data Mining

Technologies, Techniques, Tools, and Trends
Author: Bhavani Thuraisingham
Publisher: CRC Press
ISBN: 9780849318153
Category: Computers
Page: 288
View: 1310

Continue Reading →

Focusing on a data-centric perspective, this book provides a complete overview of data mining: its uses, methods, current technologies, commercial products, and future challenges. Three parts divide Data Mining: Part I describes technologies for data mining - database systems, warehousing, machine learning, visualization, decision support, statistics, parallel processing, and architectural support for data mining Part II presents tools and techniques - getting the data ready, carrying out the mining, pruning the results, evaluating outcomes, defining specific approaches, examining a specific technique based on logic programming, and citing literature and vendors for up-to-date information Part III examines emerging trends - mining distributed and heterogeneous data sources; multimedia data, such as text, images, video; mining data on the World Wide Web; metadata aspects of mining; and privacy issues. This self-contained book also contains two appendices providing exceptional information on technologies, such as data management, and artificial intelligence. Is there a need for mining? Do you have the right tools? Do you have the people to do the work? Do you have sufficient funds allocated to the project? All these answers must be answered before embarking on a project. Data Mining provides singular guidance on appropriate applications for specific techniques as well as thoroughly assesses valuable product information.

Advances in Knowledge Discovery and Data Mining, Part I

14th Pacific-Asia Conference, PAKDD 2010, Hyderabat, India, June 21-24, 2010, Proceedings
Author: Mohammed J. Zaki
Publisher: Springer Science & Business Media
ISBN: 3642136567
Category: Computers
Page: 506
View: 1935

Continue Reading →

The LNAI series reports state-of-the-art results in artificial intelligence research, development, and education, at a high level and in both printed and electronic form. Enjoying tight cooperation with the R&D community, with numerous individuals, as well as with prestigious organizations and societies, LNAI has grown into the most comprehensive artificial intelligence research forum available. The scope of LNAI spans the whole range of artificial intelligence and intelligent information processing including interdisciplinary topics in a variety of application fields. The type of material published traditionally includes -proceedings (published in time for the respective conference) -post-proceedings (consisting of thoroughly revised final full papers) -research monographs (which may be based on PhD work) More recently, several color-cover sublines have been added featuring, beyond a collection of papers, various added-value components; these sublines include -tutorials (textbook-like monographs or collections of lectures given at advanced courses) -state-of-the-art surveys (offering complete and mediated coverage of a topic) -hot topics (introducing emergent topics to the broader community)

Data Mining

Opportunities and Challenges
Author: John Wang
Publisher: IGI Global
ISBN: 9781931777834
Category: Computers
Page: 468
View: 9013

Continue Reading →

"An overview of the multidisciplinary field of data mining, this book focuses specifically on new methodologies and case studies. Included are case studies written by 44 leading scientists and talented young scholars from seven different countries. Topics covered include data mining based on rough sets, the impact of missing data, and mining free text for structure. In addition, the four basic mining operations supported by numerous mining techniques are addressed: predictive model creation supported by supervised induction techniques; link analysis supported by association discovery and sequence discovery techniques; DB segmentation supported by clustering techniques; and deviation detection supported by statistical techniques."

Web Data Mining

Exploring Hyperlinks, Contents, and Usage Data
Author: Bing Liu
Publisher: Springer Science & Business Media
ISBN: 9783642194603
Category: Computers
Page: 624
View: 4943

Continue Reading →

Web mining aims to discover useful information and knowledge from Web hyperlinks, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semi-structured and unstructured nature of the Web data. The field has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.

Data Mining Applications for Empowering Knowledge Societies


Author: Rahman, Hakikur
Publisher: IGI Global
ISBN: 1599046598
Category: Technology & Engineering
Page: 356
View: 9434

Continue Reading →

Presents an overview of the main issues of data mining, including its classification, regression, clustering, and ethical issues. Provides readers with knowledge enhancing processes as well as a wide spectrum of data mining applications.

Data Mining: Foundations and Practice


Author: Tsau Young Lin,Ying Xie,Anita Wasilewska
Publisher: Springer Science & Business Media
ISBN: 354078487X
Category: Computers
Page: 562
View: 1216

Continue Reading →

This book contains valuable studies in data mining from both foundational and practical perspectives. The foundational studies of data mining may help to lay a solid foundation for data mining as a scientific discipline, while the practical studies of data mining may lead to new data mining paradigms and algorithms. The foundational studies contained in this book focus on a broad range of subjects, including conceptual framework of data mining, data preprocessing and data mining as generalization, probability theory perspective on fuzzy systems, rough set methodology on missing values, inexact multiple-grained causal complexes, complexity of the privacy problem, logical framework for template creation and information extraction, classes of association rules, pseudo statistical independence in a contingency table, and role of sample size and determinants in granularity of contingency matrix. The practical studies contained in this book cover different fields of data mining, including rule mining, classification, clustering, text mining, Web mining, data stream mining, time series analysis, privacy preservation mining, fuzzy data mining, ensemble approaches, and kernel based approaches. We believe that the works presented in this book will encourage the study of data mining as a scientific field and spark collaboration among researchers and practitioners.

Data Mining, Southeast Asia Edition


Author: Jiawei Han,Jian Pei,Micheline Kamber
Publisher: Elsevier
ISBN: 9780080475585
Category: Computers
Page: 800
View: 8416

Continue Reading →

Our ability to generate and collect data has been increasing rapidly. Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge. Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data— including stream data, sequence data, graph structured data, social network data, and multi-relational data. A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business data Updates that incorporate input from readers, changes in the field, and more material on statistics and machine learning Dozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projects Complete classroom support for instructors at www.mkp.com/datamining2e companion site

Data Mining for Business Applications


Author: Carlos A. Mota Soares,Rayid Ghani
Publisher: IOS Press
ISBN: 1607506327
Category: Computers
Page: 181
View: 9893

Continue Reading →

Data mining is already incorporated into the business processes in sectors such as health, retail, automotive, finance, telecom and insurance as well as in government. This book contains extended versions of a selection of papers presented at a series of workshops held between 2005 and 2008 on the subject of data mining for business applications.