Complex Analysis


Author: Joseph Bak,Donald J. Newman
Publisher: Springer Science & Business Media
ISBN: 9781441972880
Category: Mathematics
Page: 328
View: 7973

Continue Reading →

This unusual and lively textbook offers a clear and intuitive approach to the classical and beautiful theory of complex variables. With very little dependence on advanced concepts from several-variable calculus and topology, the text focuses on the authentic complex-variable ideas and techniques. Accessible to students at their early stages of mathematical study, this full first year course in complex analysis offers new and interesting motivations for classical results and introduces related topics stressing motivation and technique. Numerous illustrations, examples, and now 300 exercises, enrich the text. Students who master this textbook will emerge with an excellent grounding in complex analysis, and a solid understanding of its wide applicability.

Complex Analysis


Author: Eberhard Freitag,Rolf Busam
Publisher: Springer Science & Business Media
ISBN: 3540939830
Category: Mathematics
Page: 532
View: 4613

Continue Reading →

All needed notions are developed within the book: with the exception of fundamentals which are presented in introductory lectures, no other knowledge is assumed Provides a more in-depth introduction to the subject than other existing books in this area Over 400 exercises including hints for solutions are included

Complex Analysis


Author: Theodore W. Gamelin
Publisher: Springer Science & Business Media
ISBN: 0387216073
Category: Mathematics
Page: 480
View: 8631

Continue Reading →

An introduction to complex analysis for students with some knowledge of complex numbers from high school. It contains sixteen chapters, the first eleven of which are aimed at an upper division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces, with emphasis placed on the three geometries: spherical, euclidean, and hyperbolic. Throughout, exercises range from the very simple to the challenging. The book is based on lectures given by the author at several universities, including UCLA, Brown University, La Plata, Buenos Aires, and the Universidad Autonomo de Valencia, Spain.

Funktionentheorie


Author: Eberhard Freitag,Rolf Busam
Publisher: Springer-Verlag
ISBN: 3662073498
Category: Mathematics
Page: 533
View: 2552

Continue Reading →

Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebmische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± v'-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + v'-121 + ~2 - v'-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z. B. VI + v'=3 + Vl- v'=3 = v'6. Im Jahre 1777 führte L. EULER die Bezeichnung i = A für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.

Complex Analysis


Author: Serge Lang
Publisher: Springer
ISBN: 3642592732
Category: Mathematics
Page: 458
View: 1882

Continue Reading →

The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. The first half, more or less, can be used for a one-semester course addressed to undergraduates. The second half can be used for a second semester, at either level. Somewhat more material has been included than can be covered at leisure in one or two terms, to give opportunities for the instructor to exercise individual taste, and to lead the course in whatever directions strikes the instructor's fancy at the time as well as extra read ing material for students on their own. A large number of routine exer cises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc. ) and I would recommend to anyone to look through them. More recent texts have emphasized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex analysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues.

Einführung in die Komplexe Analysis

Elemente der Funktionentheorie
Author: Wolfgang Fischer,Ingo Lieb
Publisher: Springer-Verlag
ISBN: 3834893773
Category: Mathematics
Page: 214
View: 3976

Continue Reading →

In den Bachelor-Studiengängen der Mathematik steht für die Komplexe Analysis (Funktionentheorie) oft nur eine einsemestrige 2-stündige Vorlesung zur Verfügung. Dieses Buch eignet sich als Grundlage für eine solche Vorlesung im 2. Studienjahr. Mit einer guten thematischen Auswahl, vielen Beispielen und ausführlichen Erläuterungen gibt dieses Buch eine Darstellung der Komplexen Analysis, die genau die Grundlagen und den wesentlichen Kernbestand dieses Gebietes enthält. Das Buch bietet über diese Grundausbildung hinaus weiteres Lehrmaterial als Ergänzung, sodass es auch für eine 3- oder 4 –stündige Vorlesung geeignet ist. Je nach Hörerkreis kann der Stoff unterschiedlich erweitert werden. So wurden für den „Bachelor Lehramt“ die geometrischen Aspekte der Komplexen Analysis besonders herausgearbeitet.

Anschauliche Funktionentheorie


Author: Tristan Needham
Publisher: Oldenbourg Verlag
ISBN: 348670902X
Category: Mathematics
Page: 685
View: 5021

Continue Reading →

Needhams neuartiger Zugang zur Funktionentheorie wurde von der Fachpresse begeistert aufgenommen. Mit über 500 zum großen Teil perspektivischen Grafiken vermittelt er im wahrsten Sinne des Wortes eine Anschauung von der sonst oft als trocken empfundenen Funktionentheorie. "Anschauliche Funktionentheorie ist eine wahre Freude und ein Buch so recht nach meinem Herzen. Indem er ausschließlich seine neuartige geometrische Perspektive verwendet, enthüllt Tristan Needham viele überraschende und bisher weitgehend unbeachtete Facetten der Schönheit der Funktionentheorie." (Sir Roger Penrose)

A Complex Analysis Problem Book


Author: Daniel Alpay
Publisher: Birkhäuser
ISBN: 3319421816
Category: Mathematics
Page: 596
View: 4537

Continue Reading →

This second edition presents a collection of exercises on the theory of analytic functions, including completed and detailed solutions. It introduces students to various applications and aspects of the theory of analytic functions not always touched on in a first course, while also addressing topics of interest to electrical engineering students (e.g., the realization of rational functions and its connections to the theory of linear systems and state space representations of such systems). It provides examples of important Hilbert spaces of analytic functions (in particular the Hardy space and the Fock space), and also includes a section reviewing essential aspects of topology, functional analysis and Lebesgue integration. Benefits of the 2nd edition Rational functions are now covered in a separate chapter. Further, the section on conformal mappings has been expanded.

Complex Analysis


Author: John M. Howie
Publisher: Springer Science & Business Media
ISBN: 1447100271
Category: Mathematics
Page: 260
View: 8848

Continue Reading →

Complex analysis can be a difficult subject and many introductory texts are just too ambitious for today’s students. This book takes a lower starting point than is traditional and concentrates on explaining the key ideas through worked examples and informal explanations, rather than through "dry" theory.

Basic Complex Analysis: A Comprehensive Course in Analysis, Part 2A


Author: Barry Simon
Publisher: American Mathematical Soc.
ISBN: 1470411008
Category: Mathematical analysis
Page: 641
View: 7119

Continue Reading →

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2A is devoted to basic complex analysis. It interweaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, respectively. Cauchy's view focuses on the differential and integral calculus of functions of a complex variable, with the key topics being the Cauchy integral formula and contour integration. For Riemann, the geometry of the complex plane is central, with key topics being fractional linear transformations and conformal mapping. For Weierstrass, the power series is king, with key topics being spaces of analytic functions, the product formulas of Weierstrass and Hadamard, and the Weierstrass theory of elliptic functions. Subjects in this volume that are often missing in other texts include the Cauchy integral theorem when the contour is the boundary of a Jordan region, continued fractions, two proofs of the big Picard theorem, the uniformization theorem, Ahlfors's function, the sheaf of analytic germs, and Jacobi, as well as Weierstrass, elliptic functions.

Einführung in die Funktionentheorie


Author: Hermann Weyl
Publisher: Springer-Verlag
ISBN: 3764388463
Category: Mathematics
Page: 266
View: 8249

Continue Reading →

Das Buch gibt Hermann Weyls Vorlesung zur Funktionentheorie im Wintersemester 1910/11 an der Universität Göttingen wieder. Er hielt diese Vorlesung kurz vor der Entstehung seines einflussreichen Buches über Riemannsche Flächen. Diese bisher unveröffentlichte Transkription gibt einen Einblick in die frühe Ideenwelt Hermann Weyls, einem der wichtigsten Mathematiker des 20. Jahrhunderts, dessen Ideen und Sprache auch heute noch frisch klingen. Das Buch bietet eine gute Ergänzung zu einer herkömmlichen Vorlesung über die Funktionentheorie.

Complex Analysis


Author: Ian Stewart,David Tall
Publisher: Cambridge University Press
ISBN: 9780521287630
Category: Mathematics
Page: 290
View: 6580

Continue Reading →

This is a very successful textbook for undergraduate students of pure mathematics. Students often find the subject of complex analysis very difficult. Here the authors, who are experienced and well-known expositors, avoid many of such difficulties by using two principles: (1) generalising concepts familiar from real analysis; (2) adopting an approach which exhibits and makes use of the rich geometrical structure of the subject. An opening chapter provides a brief history of complex analysis which sets it in context and provides motivation.

MATHEMATIK für Physiker und Mathematiker

Band 1: Reelle Analysis und Lineare Algebra
Author: Rainer Wüst
Publisher: John Wiley & Sons
ISBN: 3527617930
Category: Mathematics
Page: 594
View: 1596

Continue Reading →

Rainer Wüst (Jahrgang 1943) studierte von 1962 bis 1968 Mathematik an der Universität München. Danach war er bis 1975 Assistent bei Günter Hellwig an der RWTH Aachen, wo er 1970 promovierte. Nach seiner Habilitation 1975 folgte er einem Ruf auf eine Professur für Mathematik an der TU Berlin, die er bis heute inne hat. Längere Forschungssemester verbrachte er an der Princeton University, NJ (USA), und der Università di Modena (Italien). Seine Arbeitsschwerpunkte sind Mathematische Physik und Funktionalanalysis.

Complex Analysis

A Functional Analytic Approach
Author: Friedrich Haslinger
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110417243
Category: Mathematics
Page: 347
View: 8395

Continue Reading →

In this textbook, a concise approach to complex analysis of one and several variables is presented. After an introduction of Cauchy‘s integral theorem general versions of Runge‘s approximation theorem and Mittag-Leffler‘s theorem are discussed. The fi rst part ends with an analytic characterization of simply connected domains. The second part is concerned with functional analytic methods: Fréchet and Hilbert spaces of holomorphic functions, the Bergman kernel, and unbounded operators on Hilbert spaces to tackle the theory of several variables, in particular the inhomogeneous Cauchy-Riemann equations and the d-bar Neumann operator. Contents Complex numbers and functions Cauchy’s Theorem and Cauchy’s formula Analytic continuation Construction and approximation of holomorphic functions Harmonic functions Several complex variables Bergman spaces The canonical solution operator to Nuclear Fréchet spaces of holomorphic functions The -complex The twisted -complex and Schrödinger operators

Real and Complex Analysis


Author: Christopher Apelian,Steve Surace
Publisher: CRC Press
ISBN: 9781584888079
Category: Mathematics
Page: 567
View: 8024

Continue Reading →

Presents Real & Complex Analysis Together Using a Unified Approach A two-semester course in analysis at the advanced undergraduate or first-year graduate level Unlike other undergraduate-level texts, Real and Complex Analysis develops both the real and complex theory together. It takes a unified, elegant approach to the theory that is consistent with the recommendations of the MAA’s 2004 Curriculum Guide. By presenting real and complex analysis together, the authors illustrate the connections and differences between these two branches of analysis right from the beginning. This combined development also allows for a more streamlined approach to real and complex function theory. Enhanced by more than 1,000 exercises, the text covers all the essential topics usually found in separate treatments of real analysis and complex analysis. Ancillary materials are available on the book’s website. This book offers a unique, comprehensive presentation of both real and complex analysis. Consequently, students will no longer have to use two separate textbooks—one for real function theory and one for complex function theory.

An Introduction to Complex Analysis and Geometry


Author: John P. D'Angelo
Publisher: American Mathematical Soc.
ISBN: 0821852744
Category: Mathematics
Page: 163
View: 6977

Continue Reading →

An Introduction to Complex Analysis and Geometry provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The book developed from courses given in the Campus Honors Program at the University of Illinois Urbana-Champaign. These courses aimed to share with students the way many mathematics and physics problems magically simplify when viewed from the perspective of complex analysis. The book begins at an elementary level but also contains advanced material. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 through 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study. The 280 exercises range from simple computations to difficult problems. Their variety makes the book especially attractive. A reader of the first four chapters will be able to apply complex numbers in many elementary contexts. A reader of the full book will know basic one complex variable theory and will have seen it integrated into mathematics as a whole. Research mathematicians will discover several novel perspectives.

Complex Analysis for Mathematics and Engineering


Author: John H. Mathews,Russell W. Howell
Publisher: Jones & Bartlett Publishers
ISBN: 1449604455
Category: Mathematics
Page: 645
View: 6001

Continue Reading →

Intended for the undergraduate student majoring in mathematics, physics or engineering, the Sixth Edition of Complex Analysis for Mathematics and Engineering continues to provide a comprehensive, student-friendly presentation of this interesting area of mathematics. The authors strike a balance between the pure and applied aspects of the subject, and present concepts in a clear writing style that is appropriate for students at the junior/senior level. Through its thorough, accessible presentation and numerous applications, the sixth edition of this classic text allows students to work through even the most difficult proofs with ease. New exercise sets help students test their understanding of the material at hand and assess their progress through the course. Additional Mathematica and Maple exercises, as well as a student study guide are also available online.

Funktionentheorie 1


Author: Reinhold Remmert,Georg Schumacher
Publisher: Springer-Verlag
ISBN: 3642562817
Category: Mathematics
Page: 402
View: 727

Continue Reading →

Diese fünfte Auflage wurde zusammen mit dem zweitgenannten Autor kritisch durchgesehen, ergänzt und verbessert. Die Besprechung zur ersten Auflage ist nach wie vor aktuell. Aus den Besprechungen zur ersten Auflage: "Aufgelockert durch viele Beispiele und Übungsaufgaben, wird die Theorie der Funktionen einer komplexen Veränderlichen bis zum Residuenkalkül entwickelt. Im Zentrum stehen die Integralsätze von Cauchy.... Jeder Paragraph schließt mit historischen Hinweisen, die auch die persönlichen Beziehungen der Beteiligten nicht ausklammern. So erfährt man natürlich die unterschiedlichen Standpunkte von Cauchy und Weierstrass. Neben den Themen, die in keinem Text zur Funktionentheorie fehlen dürfen, findet man auch "Raritäten", etwa: Eisensteins Zugang zu den trigonometrischen Funktionen mittels Reihen oder Ritts Satz über asymptotische Reihenentwicklung, welcher einen berühmten Satz von E. Borel enthält." Elemente der Mathematik

Explorations in Complex Analysis


Author: Michael A. Brilleslyper,Michael J. Dorff,Jane M. McDougall, James S. Rolf,Lisbeth E. Schaubroek,Richard L. Stankewitz,Kenneth Stephenson
Publisher: MAA
ISBN: 0883857782
Category: Mathematics
Page: 373
View: 4047

Continue Reading →

This book is written for mathematics students who have encountered basic complex analysis and want to explore more advanced project and/or research topics. It could be used as (a) a supplement for a standard undergraduate complex analysis course, allowing students in groups or as individuals to explore advanced topics, (b) a project resource for a senior capstone course for mathematics majors, (c) a guide for an advanced student or a small group of students to independently choose and explore an undergraduate research topic, or (d) a portal for the mathematically curious, a hands-on introduction to the beauties of complex analysis. Research topics in the book include complex dynamics, minimal surfaces, fluid flows, harmonic, conformal, and polygonal mappings, and discrete complex analysis via circle packing. The nature of this book is different from many mathematics texts: the focus is on student-driven and technology-enhanced investigation. Interlaced in the reading for each chapter are examples, exercises, explorations, and projects, nearly all linked explicitly with computer applets for visualization and hands-on manipulation. There are more than 15 Java applets that allow students to explore the research topics without the need for purchasing additional software.