Categories and Sheaves


Author: Masaki Kashiwara,Pierre Schapira
Publisher: Springer Science & Business Media
ISBN: 3540279490
Category: Mathematics
Page: 498
View: 1892

Continue Reading →

Categories and sheaves appear almost frequently in contemporary advanced mathematics. This book covers categories, homological algebra and sheaves in a systematic manner starting from scratch and continuing with full proofs to the most recent results in the literature, and sometimes beyond. The authors present the general theory of categories and functors, emphasizing inductive and projective limits, tensor categories, representable functors, ind-objects and localization.

D-Modules, Perverse Sheaves, and Representation Theory


Author: Ryoshi Hotta,Toshiyuki Tanisaki
Publisher: Springer Science & Business Media
ISBN: 081764363X
Category: Mathematics
Page: 412
View: 1851

Continue Reading →

D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.

Sheaves in Topology


Author: Alexandru Dimca
Publisher: Springer Science & Business Media
ISBN: 3642188680
Category: Mathematics
Page: 240
View: 5871

Continue Reading →

Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds. This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients. The author helps readers progress quickly from the basic theory to current research questions, thoroughly supported along the way by examples and exercises.

Lie Groups

An Approach through Invariants and Representations
Author: Claudio Procesi
Publisher: Springer Science & Business Media
ISBN: 0387289291
Category: Mathematics
Page: 600
View: 5153

Continue Reading →

Lie groups has been an increasing area of focus and rich research since the middle of the 20th century. In Lie Groups: An Approach through Invariants and Representations, the author's masterful approach gives the reader a comprehensive treatment of the classical Lie groups along with an extensive introduction to a wide range of topics associated with Lie groups: symmetric functions, theory of algebraic forms, Lie algebras, tensor algebra and symmetry, semisimple Lie algebras, algebraic groups, group representations, invariants, Hilbert theory, and binary forms with fields ranging from pure algebra to functional analysis. By covering sufficient background material, the book is made accessible to a reader with a relatively modest mathematical background. Historical information, examples, exercises are all woven into the text. This unique exposition is suitable for a broad audience, including advanced undergraduates, graduates, mathematicians in a variety of areas from pure algebra to functional analysis and mathematical physics.

Sheaves on Manifolds

With a Short History. «Les débuts de la théorie des faisceaux». By Christian Houzel
Author: Masaki Kashiwara,Pierre Schapira
Publisher: Springer Science & Business Media
ISBN: 9783540518617
Category: Mathematics
Page: 512
View: 6908

Continue Reading →

Sheaf Theory is modern, active field of mathematics at the intersection of algebraic topology, algebraic geometry and partial differential equations. This volume offers a comprehensive and self-contained treatment of Sheaf Theory from the basis up, with emphasis on the microlocal point of view. From the reviews: "Clearly and precisely written, and contains many interesting ideas: it describes a whole, largely new branch of mathematics." –Bulletin of the L.M.S.

Algebra

Chapter 0
Author: Paolo Aluffi
Publisher: American Mathematical Soc.
ISBN: 0821847813
Category: Algebra
Page: 713
View: 5115

Continue Reading →

Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.

K-Theory

An Introduction
Author: Max Karoubi
Publisher: Springer Science & Business Media
ISBN: 3540798897
Category: Mathematics
Page: 308
View: 2543

Continue Reading →

AT-theory was introduced by A. Grothendieck in his formulation of the Riemann- Roch theorem (cf. Borel and Serre [2]). For each projective algebraic variety, Grothendieck constructed a group from the category of coherent algebraic sheaves, and showed that it had many nice properties. Atiyah and Hirzebruch [3] con sidered a topological analog defined for any compact space X, a group K{X) constructed from the category of vector bundles on X. It is this ''topological J^-theory" that this book will study. Topological ^-theory has become an important tool in topology. Using- theory, Adams and Atiyah were able to give a simple proof that the only spheres which can be provided with //-space structures are S^, S^ and S'^. Moreover, it is possible to derive a substantial part of stable homotopy theory from A^-theory (cf. J. F. Adams [2]). Further applications to analysis and algebra are found in the work of Atiyah-Singer [2], Bass [1], Quillen [1], and others. A key factor in these applications is Bott periodicity (Bott [2]). The purpose of this book is to provide advanced students and mathematicians in other fields with the fundamental material in this subject. In addition, several applications of the type described above are included. In general we have tried to make this book self-contained, beginning with elementary concepts wherever possible; however, we assume that the reader is familiar with the basic definitions of homotopy theory: homotopy classes of maps and homotopy groups (cf.

Fundamental Algebraic Geometry

Grothendieck's FGA Explained
Author: Barbara Fantechi
Publisher: American Mathematical Soc.
ISBN: 0821842455
Category: Mathematics
Page: 339
View: 9198

Continue Reading →

Alexander Grothendieck introduced many concepts into algebraic geometry; they turned out to be astoundingly powerful and productive and truly revolutionized the subject. Grothendieck sketched his new theories in a series of talks at the Seminaire Bourbaki between 1957 and 1962 and collected his write-ups in a volume entitled ``Fondements de la Geometrie Algebrique,'' known as FGA. Much of FGA is now common knowledge; however, some of FGA is less well known, and its full scope is familiar to few. The present book resulted from the 2003 ``Advanced School in Basic Algebraic Geometry'' at the ICTP in Trieste, Italy. The book aims to fill in Grothendieck's brief sketches. There are four themes: descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. Most results are proved in full detail; furthermore, newer ideas are introduced to promote understanding, and many connections are drawn to newer developments. The main prerequisite is a thorough acquaintance with basic scheme theory. Thus this book is a valuable resource for anyone doing algebraic geometry.

Handbook of Algebraic Topology


Author: I.M. James
Publisher: Elsevier
ISBN: 9780080532981
Category: Mathematics
Page: 1324
View: 3429

Continue Reading →

Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.

Modules Over Operads and Functors


Author: Benoit Fresse
Publisher: Springer Science & Business Media
ISBN: 3540890556
Category: Mathematics
Page: 308
View: 4864

Continue Reading →

The notion of an operad supplies both a conceptual and effective device to handle a variety of algebraic structures in various situations. Operads were introduced 40 years ago in algebraic topology in order to model the structure of iterated loop spaces. Since then, operads have been used fruitfully in many fields of mathematics and physics. This monograph begins with a review of the basis of operad theory. The main purpose is to study structures of modules over operads as a new device to model functors between categories of algebras as effectively as operads model categories of algebras.

Differential Algebraic Topology

From Stratifolds to Exotic Spheres
Author: Matthias Kreck
Publisher: American Mathematical Soc.
ISBN: 0821848984
Category: Mathematics
Page: 218
View: 9245

Continue Reading →

This book presents a geometric introduction to the homology of topological spaces and the cohomology of smooth manifolds. The author introduces a new class of stratified spaces, so-called stratifolds. He derives basic concepts from differential topology such as Sard's theorem, partitions of unity and transversality. Based on this, homology groups are constructed in the framework of stratifolds and the homology axioms are proved. This implies that for nice spaces these homology groups agree with ordinary singular homology. Besides the standard computations of homology groups using the axioms, straightforward constructions of important homology classes are given. The author also defines stratifold cohomology groups following an idea of Quillen. Again, certain important cohomology classes occur very naturally in this description, for example, the characteristic classes which are constructed in the book and applied later on. One of the most fundamental results, Poincare duality, is almost a triviality in this approach. Some fundamental invariants, such as the Euler characteristic and the signature, are derived from (co)homology groups. These invariants play a significant role in some of the most spectacular results in differential topology. In particular, the author proves a special case of Hirzebruch's signature theorem and presents as a highlight Milnor's exotic 7-spheres. This book is based on courses the author taught in Mainz and Heidelberg. Readers should be familiar with the basic notions of point-set topology and differential topology. The book can be used for a combined introduction to differential and algebraic topology, as well as for a quick presentation of (co)homology in a course about differential geometry.

Supersymmetry for Mathematicians

An Introduction
Author: V. S. Varadarajan
Publisher: American Mathematical Soc.
ISBN: 0821835742
Category: Mathematics
Page: 300
View: 6623

Continue Reading →

Supersymmetry has been the object of study by theoretical physicists since the early 1970's. In recent years it has attracted the interest of mathematicians because of its novelty, and because of significance, both in mathematics and physics, of the main issues it raises. This book presents the foundations of supersymmetry to the mathematically minded reader in a cogent and self-contained manner. It begins with a brief introduction to the physical foundations of the theory, especially the classification of relativistic particles and their wave equations, such as the equations of Dirac and Weyl. It then continues the development of the theory of supermanifolds stressing the analogy with the Grothendieck theory of schemes. All the super linear algebra needed for the book is developed here and the basic theorems are established: differential and integral calculus in supermanifolds, Frobenius theorem, foundations of the theory of super Lie groups, and so on. A special feature of the book is the treatment in depth of the theory of spinors in all dimensions and signatures, which is the basis of all developments of supergeometry both in physics and mathematics, especially in quantum field theory and supergravity.

Periods and Nori Motives


Author: Annette Huber,Stefan Müller-Stach
Publisher: Springer
ISBN: 3319509268
Category: Mathematics
Page: 372
View: 8845

Continue Reading →

This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori’s abelian category of mixed motives. It develops Nori’s approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori’s unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.

Quanta of Maths


Author: Alain Connes,Institut Henri Poincaré,Institut des hautes études scientifiques (Paris, France),Institut de mathématiques de Jussieu
Publisher: American Mathematical Soc.
ISBN: 0821852035
Category: Mathematics
Page: 675
View: 2483

Continue Reading →

The work of Alain Connes has cut a wide swath across several areas of mathematics and physics. Reflecting its broad spectrum and profound impact on the contemporary mathematical landscape, this collection of articles covers a wealth of topics at the forefront of research in operator algebras, analysis, noncommutative geometry, topology, number theory and physics. Specific themes covered by the articles are as follows: entropy in operator algebras, regular $C^*$-algebras of integral domains, properly infinite $C^*$-algebras, representations of free groups and 1-cohomology, Leibniz seminorms and quantum metric spaces; von Neumann algebras, fundamental Group of $\mathrm{II}_1$ factors, subfactors and planar algebras; Baum-Connes conjecture and property T, equivariant K-homology, Hermitian K-theory; cyclic cohomology, local index formula and twisted spectral triples, tangent groupoid and the index theorem; noncommutative geometry and space-time, spectral action principle, quantum gravity, noncommutative ADHM and instantons, non-compact spectral triples of finite volume, noncommutative coordinate algebras; Hopf algebras, Vinberg algebras, renormalization and combinatorics, motivic renormalization and singularities; cyclotomy and analytic geometry over $F_1$, quantum modular forms; differential K-theory, cyclic theory and S-cohomology.

Koszul Cohomology and Algebraic Geometry


Author: Marian Aprodu,Jan Nagel
Publisher: American Mathematical Soc.
ISBN: 0821849646
Category: Mathematics
Page: 125
View: 5443

Continue Reading →

The systematic use of Koszul cohomology computations in algebraic geometry can be traced back to the foundational work of Mark Green in the 1980s. Green connected classical results concerning the ideal of a projective variety with vanishing theorems for Koszul cohomology. Green and Lazarsfeld also stated two conjectures that relate the Koszul cohomology of algebraic curves with the existence of special divisors on the curve. These conjectures became an important guideline for future research. In the intervening years, there has been a growing interaction between Koszul cohomology and algebraic geometry. Green and Voisin applied Koszul cohomology to a number of Hodge-theoretic problems, with remarkable success. More recently, Voisin achieved a breakthrough by proving Green's conjecture for general curves; soon afterwards, the Green-Lazarsfeld conjecture for general curves was proved as well. This book is primarily concerned with applications of Koszul cohomology to algebraic geometry, with an emphasis on syzygies of complex projective curves. The authors' main goal is to present Voisin's proof of the generic Green conjecture, and subsequent refinements. They discuss the geometric aspects of the theory and a number of concrete applications of Koszul cohomology to problems in algebraic geometry, including applications to Hodge theory and to the geometry of the moduli space of curves.

Cohomology of Number Fields


Author: Jürgen Neukirch,Alexander Schmidt,Kay Wingberg
Publisher: Springer Science & Business Media
ISBN: 3540378898
Category: Mathematics
Page: 826
View: 9120

Continue Reading →

This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.

Factorization Algebras in Quantum Field Theory


Author: Kevin Costello,Owen Gwilliam
Publisher: Cambridge University Press
ISBN: 1107163102
Category: Mathematics
Page: 398
View: 3048

Continue Reading →

This first volume develops factorization algebras with a focus upon examples exhibiting their use in field theory, which will be useful for researchers and graduates.

The Geometry of Infinite-Dimensional Groups


Author: Boris Khesin,Robert Wendt
Publisher: Springer Science & Business Media
ISBN: 3540772634
Category: Mathematics
Page: 304
View: 3589

Continue Reading →

This monograph gives an overview of various classes of infinite-dimensional Lie groups and their applications in Hamiltonian mechanics, fluid dynamics, integrable systems, gauge theory, and complex geometry. The text includes many exercises and open questions.

Toposes, Triples and Theories


Author: M. Barr,C. Wells
Publisher: Springer Science & Business Media
ISBN: 1489900217
Category: Mathematics
Page: 347
View: 5197

Continue Reading →

As its title suggests, this book is an introduction to three ideas and the connections between them. Before describing the content of the book in detail, we describe each concept briefly. More extensive introductory descriptions of each concept are in the introductions and notes to Chapters 2, 3 and 4. A topos is a special kind of category defined by axioms saying roughly that certain constructions one can make with sets can be done in the category. In that sense, a topos is a generalized set theory. However, it originated with Grothendieck and Giraud as an abstraction of the of the category of sheaves of sets on a topological space. Later, properties Lawvere and Tierney introduced a more general id~a which they called "elementary topos" (because their axioms did not quantify over sets), and they and other mathematicians developed the idea that a theory in the sense of mathematical logic can be regarded as a topos, perhaps after a process of completion. The concept of triple originated (under the name "standard construc in Godement's book on sheaf theory for the purpose of computing tions") sheaf cohomology. Then Peter Huber discovered that triples capture much of the information of adjoint pairs. Later Linton discovered that triples gave an equivalent approach to Lawverc's theory of equational theories (or rather the infinite generalizations of that theory). Finally, triples have turned out to be a very important tool for deriving various properties of toposes.

Topological Automorphic Forms


Author: Mark Behrens,Tyler Lawson
Publisher: American Mathematical Soc.
ISBN: 082184539X
Category: Mathematics
Page: 136
View: 8784

Continue Reading →

The authors apply a theorem of J. Lurie to produce cohomology theories associated to certain Shimura varieties of type $U(1,n-1)$. These cohomology theories of topological automorphic forms ($\mathit{TAF}$) are related to Shimura varieties in the same way that $\mathit{TMF}$ is related to the moduli space of elliptic curves.