**Author**: Bart Jacobs

**Publisher:**Gulf Professional Publishing

**ISBN:**9780444508539

**Category:**Mathematics

**Page:**760

**View:**2092

Skip to content
# Search Results for: categorical-logic-and-type-theory

**Author**: Bart Jacobs

**Publisher:** Gulf Professional Publishing

**ISBN:** 9780444508539

**Category:** Mathematics

**Page:** 760

**View:** 2092

This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

**Author**: B. Jacobs

**Publisher:** Elsevier

**ISBN:** 9780080528700

**Category:** Mathematics

**Page:** 778

**View:** 6185

This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

**Author**: Bart Jacobs

**Publisher:** Elsevier Science Limited

**ISBN:** N.A

**Category:** Mathematics

**Page:** 760

**View:** 6527

This text attempts to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category.

**Author**: J. Lambek,P. J. Scott

**Publisher:** Cambridge University Press

**ISBN:** 9780521356534

**Category:** Mathematics

**Page:** 304

**View:** 4559

Part I indicates that typed-calculi are a formulation of higher-order logic, and cartesian closed categories are essentially the same. Part II demonstrates that another formulation of higher-order logic is closely related to topos theory.
*Correctness, Completeness and Independence Results*

**Author**: Thomas Streicher

**Publisher:** Springer Science & Business Media

**ISBN:** 146120433X

**Category:** Computers

**Page:** 299

**View:** 6427

Typing plays an important role in software development. Types can be consid ered as weak specifications of programs and checking that a program is of a certain type provides a verification that a program satisfies such a weak speci fication. By translating a problem specification into a proposition in constructive logic, one can go one step further: the effectiveness and unifonnity of a con structive proof allows us to extract a program from a proof of this proposition. Thus by the "proposition-as-types" paradigm one obtains types whose elements are considered as proofs. Each of these proofs contains a program correct w.r.t. the given problem specification. This opens the way for a coherent approach to the derivation of provably correct programs. These features have led to a "typeful" programming style where the classi cal typing concepts such as records or (static) arrays are enhanced by polymor phic and dependent types in such a way that the types themselves get a complex mathematical structure. Systems such as Coquand and Huet's Calculus of Con structions are calculi for computing within extended type systems and provide a basis for a deduction oriented mathematical foundation of programming. On the other hand, the computational power and the expressive (impred icativity !) of these systems makes it difficult to define appropriate semantics.

**Author**: Robert Harper

**Publisher:** Cambridge University Press

**ISBN:** 1107150302

**Category:** Computers

**Page:** 512

**View:** 4398

This book unifies a broad range of programming language concepts under the framework of type systems and structural operational semantics.

**Author**: Roy L. Crole

**Publisher:** Cambridge University Press

**ISBN:** 9780521457019

**Category:** Computers

**Page:** 335

**View:** 6494

This textbook explains the basic principles of categorical type theory and the techniques used to derive categorical semantics for specific type theories. It introduces the reader to ordered set theory, lattices and domains, and this material provides plenty of examples for an introduction to category theory, which covers categories, functors, natural transformations, the Yoneda lemma, cartesian closed categories, limits, adjunctions and indexed categories. Four kinds of formal system are considered in detail, namely algebraic, functional, polymorphic functional, and higher order polymorphic functional type theory. For each of these the categorical semantics are derived and results about the type systems are proved categorically. Issues of soundness and completeness are also considered. Aimed at advanced undergraduates and beginning graduates, this book will be of interest to theoretical computer scientists, logicians and mathematicians specializing in category theory.

**Author**: J. Roger Hindley

**Publisher:** Cambridge University Press

**ISBN:** 9780521465182

**Category:** Computers

**Page:** 186

**View:** 7257

Type theory is one of the most important tools in the design of higher-level programming languages, such as ML. This book introduces and teaches its techniques by focusing on one particularly neat system and studying it in detail. By concentrating on the principles that make the theory work in practice, the author covers all the key ideas without getting involved in the complications of more advanced systems. This book takes a type-assignment approach to type theory, and the system considered is the simplest polymorphic one. The author covers all the basic ideas, including the system's relation to propositional logic, and gives a careful treatment of the type-checking algorithm that lies at the heart of every such system. Also featured are two other interesting algorithms that until now have been buried in inaccessible technical literature. The mathematical presentation is rigorous but clear, making it the first book at this level that can be used as an introduction to type theory for computer scientists.

**Author**: Bob Coecke

**Publisher:** Springer

**ISBN:** 3642128211

**Category:** Science

**Page:** 1031

**View:** 5869

This volume provides a series of tutorials on mathematical structures which recently have gained prominence in physics, ranging from quantum foundations, via quantum information, to quantum gravity. These include the theory of monoidal categories and corresponding graphical calculi, Girard’s linear logic, Scott domains, lambda calculus and corresponding logics for typing, topos theory, and more general process structures. Most of these structures are very prominent in computer science; the chapters here are tailored towards an audience of physicists.
*An Introduction to Category Theory for the Working Computer Scientist*

**Author**: Andréa Asperti,G. Longo

**Publisher:** MIT Press (MA)

**ISBN:** 9780262011259

**Category:** Computers

**Page:** 306

**View:** 6707

*Model-Theoretical Methods in the Theory of Topoi and Related Categories*

**Author**: M. Makkai,G.E. Reyes

**Publisher:** Springer

**ISBN:** 3540371001

**Category:** Mathematics

**Page:** 318

**View:** 1242

**Author**: Paul Taylor

**Publisher:** Cambridge University Press

**ISBN:** 9780521631075

**Category:** Mathematics

**Page:** 572

**View:** 4839

Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.

**Author**: Dov M. Gabbay,John Hayden Woods,Akihiro Kanamori

**Publisher:** Elsevier

**ISBN:** 0444516212

**Category:** Reference

**Page:** 865

**View:** 5342

"Starting at the very beginning with Aristotle's founding contributions, logic has been graced by several periods in which the subject has flourished, attaining standards of rigour and conceptual sophistication underpinning a large and deserved reputation as a leading expression of human intellectual effort. It is widely recognized that the period from the mid-nineteenth century until the three-quarter mark of the century just past marked one of these golden ages, a period of explosive creativity and transforming insights. It has been said that ignorance of our history is a kind of amnesia, concerning which it is wise to note that amnesia is an illness. It would be a matter for regret, if we lost contact with another of logic's golden ages, one that greatly exceeds in reach that enjoyed by mathematical symbolic logic. This is the period between the eleventh and sixteenth centuries, loosely conceived of as the Middle Ages. The logic of this period does not have the expressive virtues afforded by the symbolic resources of uninterpreted calculi, but mediaeval logic rivals in range, originality and intellectual robustness a good deal of the modern record. The range of logic in this period is striking, extending from investigation of quantifiers and logic consequence to enquiries into logical truth; from theories of reference to accounts of identity; from work on the modalities to the stirrings of the logic of relations, from theories of meaning to analyses of the paradoxes, and more. While the scope of mediaeval logic is impressive, of greater importance is that nearly all of it can be read by the modern logician with at least some prospect of profit. The last thing that mediaeval logic is, is a museum piece." -- Publisher's website.

**Author**: Andrei Rodin

**Publisher:** Springer Science & Business Media

**ISBN:** 3319004042

**Category:** Philosophy

**Page:** 285

**View:** 3517

This volume explores the many different meanings of the notion of the axiomatic method, offering an insightful historical and philosophical discussion about how these notions changed over the millennia. The author, a well-known philosopher and historian of mathematics, first examines Euclid, who is considered the father of the axiomatic method, before moving onto Hilbert and Lawvere. He then presents a deep textual analysis of each writer and describes how their ideas are different and even how their ideas progressed over time. Next, the book explores category theory and details how it has revolutionized the notion of the axiomatic method. It considers the question of identity/equality in mathematics as well as examines the received theories of mathematical structuralism. In the end, Rodin presents a hypothetical New Axiomatic Method, which establishes closer relationships between mathematics and physics. Lawvere's axiomatization of topos theory and Voevodsky's axiomatization of higher homotopy theory exemplify a new way of axiomatic theory building, which goes beyond the classical Hilbert-style Axiomatic Method. The new notion of Axiomatic Method that emerges in categorical logic opens new possibilities for using this method in physics and other natural sciences. This volume offers readers a coherent look at the past, present and anticipated future of the Axiomatic Method.

**Author**: Elaine Landry

**Publisher:** Oxford University Press

**ISBN:** 019874899X

**Category:** Mathematics

**Page:** 528

**View:** 6870

This is the first volume on category theory for a broad philosophical readership. It is designed to show the interest and significance of category theory for a range of philosophical interests: mathematics, proof theory, computation, cognition, scientific modelling, physics, ontology, the structure of the world. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, in an accessible waythat builds on the concepts that are already familiar to philosophers working in these areas.
*Interactive Proof with Cambridge LCF*

**Author**: Lawrence C. Paulson

**Publisher:** Cambridge University Press

**ISBN:** 9780521395601

**Category:** Computers

**Page:** 320

**View:** 1089

Logic and Computation is concerned with techniques for formal theorem-proving, with particular reference to Cambridge LCF (Logic for Computable Functions). Cambridge LCF is a computer program for reasoning about computation. It combines methods of mathematical logic with domain theory, the basis of the denotational approach to specifying the meaning of statements in a programming language. This book consists of two parts. Part I outlines the mathematical preliminaries: elementary logic and domain theory. They are explained at an intuitive level, giving references to more advanced reading. Part II provides enough detail to serve as a reference manual for Cambridge LCF. It will also be a useful guide for implementors of other programs based on the LCF approach.

**Author**: Morten Heine Sørensen,Pawel Urzyczyn

**Publisher:** Elsevier

**ISBN:** 9780080478920

**Category:** Mathematics

**Page:** 456

**View:** 3637

The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq). This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic. Key features - The Curry-Howard Isomorphism treated as common theme - Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics - Thorough study of the connection between calculi and logics - Elaborate study of classical logics and control operators - Account of dialogue games for classical and intuitionistic logic - Theoretical foundations of computer-assisted reasoning · The Curry-Howard Isomorphism treated as the common theme. · Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics · Thorough study of the connection between calculi and logics. · Elaborate study of classical logics and control operators. · Account of dialogue games for classical and intuitionistic logic. · Theoretical foundations of computer-assisted reasoning
*An Introduction*

**Author**: John L. Bell

**Publisher:** Courier Corporation

**ISBN:** 0486462862

**Category:** Mathematics

**Page:** 267

**View:** 4517

This text introduces topos theory, a development in category theory that unites important but seemingly diverse notions from algebraic geometry, set theory, and intuitionistic logic. Topics include local set theories, fundamental properties of toposes, sheaves, local-valued sets, and natural and real numbers in local set theories. 1988 edition.
*an introduction*

**Author**: Bengt Nordström,Kent Petersson,Jan M. Smith

**Publisher:** Oxford University Press, USA

**ISBN:** N.A

**Category:** Computers

**Page:** 221

**View:** 6006

In recent years, several formalisms for program construction have appeared. One such formalism is the type theory developed by Per Martin-Lof. Well suited as a theory for program construction, it makes possible the expression of both specifications and programs within the same formalism. Furthermore, the proof rules can be used to derive a correct program from a specification as well as to verify that a given program has a certain property. This book contains a thorough introduction to type theory, with information on polymorphic sets, subsets, monomorphic sets, and a full set of helpful examples.

Full PDF Download Free

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy