**Author**: José M. Bernardo,Adrian F. M. Smith

**Publisher:**John Wiley & Sons

**ISBN:**047031771X

**Category:**Mathematics

**Page:**608

**View:**1839

Skip to content
# Search Results for: bayesian-theory-wiley-series-in-probability-and-statistics

**Author**: José M. Bernardo,Adrian F. M. Smith

**Publisher:** John Wiley & Sons

**ISBN:** 047031771X

**Category:** Mathematics

**Page:** 608

**View:** 1839

This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics

**Author**: Clair L. Alston,Kerrie L. Mengersen,Anthony N. Pettitt

**Publisher:** John Wiley & Sons

**ISBN:** 1118394321

**Category:** Mathematics

**Page:** 504

**View:** 5212

Provides an accessible foundation to Bayesian analysis usingreal world models This book aims to present an introduction to Bayesian modellingand computation, by considering real case studies drawn fromdiverse fields spanning ecology, health, genetics and finance. Eachchapter comprises a description of the problem, the correspondingmodel, the computational method, results and inferences as well asthe issues that arise in the implementation of theseapproaches. Case Studies in Bayesian Statistical Modelling andAnalysis: Illustrates how to do Bayesian analysis in a clear and concisemanner using real-world problems. Each chapter focuses on a real-world problem and describes theway in which the problem may be analysed using Bayesianmethods. Features approaches that can be used in a wide area ofapplication, such as, health, the environment, genetics,information science, medicine, biology, industry and remotesensing. Case Studies in Bayesian Statistical Modelling andAnalysis is aimed at statisticians, researchers andpractitioners who have some expertise in statistical modelling andanalysis, and some understanding of the basics of Bayesianstatistics, but little experience in its application. Graduatestudents of statistics and biostatistics will also find this bookbeneficial.

**Author**: John Geweke

**Publisher:** John Wiley & Sons

**ISBN:** 0471744727

**Category:** Mathematics

**Page:** 300

**View:** 1831

Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding ofBayesian analysis that is grounded in the theory of inference andoptimal decision making. Contemporary Bayesian Econometrics andStatistics provides readers with state-of-the-art simulationmethods and models that are used to solve complex real-worldproblems. Armed with a strong foundation in both theory andpractical problem-solving tools, readers discover how to optimizedecision making when faced with problems that involve limited orimperfect data. The book begins by examining the theoretical and mathematicalfoundations of Bayesian statistics to help readers understand howand why it is used in problem solving. The author then describeshow modern simulation methods make Bayesian approaches practicalusing widely available mathematical applications software. Inaddition, the author details how models can be applied to specificproblems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decadeof classroom experience, and readers will find the author'sapproach very engaging and accessible. There are nearly 200examples and exercises to help readers see how effective use ofBayesian statistics enables them to make optimal decisions. MATLAB?and R computer programs are integrated throughout the book. Anaccompanying Web site provides readers with computer code for manyexamples and datasets. This publication is tailored for research professionals who useeconometrics and similar statistical methods in their work. Withits emphasis on practical problem solving and extensive use ofexamples and exercises, this is also an excellent textbook forgraduate-level students in a broad range of fields, includingeconomics, statistics, the social sciences, business, and publicpolicy.
*principles, models, and applications*

**Author**: S. James Press

**Publisher:** John Wiley & Sons Inc

**ISBN:** N.A

**Category:** Mathematics

**Page:** 237

**View:** 7179

An introduction to Bayesian statistics, with emphasis on interpretation of theory, and application of Bayesian ideas to practical problems. First part covers basic issues and principles, such as subjective probability, Bayesian inference and decision making, the likelihood principle, predictivism, and numerical methods of approximating posterior distributions, and includes a listing of Bayesian computer programs. Second part is devoted to models and applications, including univariate and multivariate regression models, the general linear model, Bayesian classification and discrimination, and a case study of how disputed authorship of some of the Federalist Papers was resolved via Bayesian analysis. Includes biographical material on Thomas Bayes, and a reproduction of Bayes's original essay. Contains exercises.
*Essays in Honor of Arnold Zellner*

**Author**: Donald A. Berry

**Publisher:** John Wiley & Sons

**ISBN:** 9780471118565

**Category:** Business & Economics

**Page:** 577

**View:** 1633

This book is a definitive work that captures the current state of knowledge of Bayesian Analysis in Statistics and Econometrics and attempts to move it forward. It covers such topics as foundations, forecasting inferential matters, regression, computation and applications.

**Author**: Manfredo P. do Carmo

**Publisher:** Springer-Verlag

**ISBN:** 3322850722

**Category:** Technology & Engineering

**Page:** 263

**View:** 1090

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang
*Theory and Methods*

**Author**: Michael Goldstein,David Wooff

**Publisher:** John Wiley & Sons

**ISBN:** 9780470065679

**Category:** Mathematics

**Page:** 536

**View:** 9547

Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodology, and practicalities of this important field. The text provides a thorough coverage of Bayes linear analysis, from the development of the basic language to the collection of algebraic results needed for efficient implementation, with detailed practical examples. The book covers: The importance of partial prior specifications for complex problems where it is difficult to supply a meaningful full prior probability specification. Simple ways to use partial prior specifications to adjust beliefs, given observations. Interpretative and diagnostic tools to display the implications of collections of belief statements, and to make stringent comparisons between expected and actual observations. General approaches to statistical modelling based upon partial exchangeability judgements. Bayes linear graphical models to represent and display partial belief specifications, organize computations, and display the results of analyses. Bayes Linear Statistics is essential reading for all statisticians concerned with the theory and practice of Bayesian methods. There is an accompanying website hosting free software and guides to the calculations within the book.
*An Introduction*

**Author**: Timo Koski,John Noble

**Publisher:** John Wiley & Sons

**ISBN:** 1119964954

**Category:** Mathematics

**Page:** 366

**View:** 3852

Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include: An introduction to Dirichlet Distribution, Exponential Families and their applications. A detailed description of learning algorithms and Conditional Gaussian Distributions using Junction Tree methods. A discussion of Pearl's intervention calculus, with an introduction to the notion of see and do conditioning. All concepts are clearly defined and illustrated with examples and exercises. Solutions are provided online. This book will prove a valuable resource for postgraduate students of statistics, computer engineering, mathematics, data mining, artificial intelligence, and biology. Researchers and users of comparable modelling or statistical techniques such as neural networks will also find this book of interest.

**Author**: Peter E. Rossi,Greg M. Allenby,Rob McCulloch

**Publisher:** John Wiley & Sons

**ISBN:** 0470863684

**Category:** Mathematics

**Page:** 368

**View:** 2268

The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources. Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product purchases and survey data, demand models based on micro-economic theory and random effect models used to pool data among respondents. The book also discusses the theory and practical use of MCMC methods. Written by the leading experts in the field, this unique book: Presents a unified treatment of Bayesian methods in marketing, with common notation and algorithms for estimating the models. Provides a self-contained introduction to Bayesian methods. Includes case studies drawn from the authors’ recent research to illustrate how Bayesian methods can be extended to apply to many important marketing problems. Is accompanied by an R package, bayesm, which implements all of the models and methods in the book and includes many datasets. In addition the book’s website hosts datasets and R code for the case studies. Bayesian Statistics and Marketing provides a platform for researchers in marketing to analyse their data with state-of-the-art methods and develop new models of consumer behaviour. It provides a unified reference for cutting-edge marketing researchers, as well as an invaluable guide to this growing area for both graduate students and professors, alike.
*A Critical Introductory Treatment*

**Author**: Bruno de Finetti

**Publisher:** John Wiley & Sons

**ISBN:** 1119286379

**Category:** Mathematics

**Page:** 596

**View:** 1429

First issued in translation as a two-volume work in 1975, this classic book provides the first complete development of the theory of probability from a subjectivist viewpoint. It proceeds from a detailed discussion of the philosophical mathematical aspects to a detailed mathematical treatment of probability and statistics. De Finetti’s theory of probability is one of the foundations of Bayesian theory. De Finetti stated that probability is nothing but a subjective analysis of the likelihood that something will happen and that that probability does not exist outside the mind. It is the rate at which a person is willing to bet on something happening. This view is directly opposed to the classicist/ frequentist view of the likelihood of a particular outcome of an event, which assumes that the same event could be identically repeated many times over, and the 'probability' of a particular outcome has to do with the fraction of the time that outcome results from the repeated trials.

**Author**: Simon Jackman

**Publisher:** John Wiley & Sons

**ISBN:** 9780470686638

**Category:** Mathematics

**Page:** 598

**View:** 5777

Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.

**Author**: David A. Stephens

**Publisher:** Oxford University Press

**ISBN:** 0199695601

**Category:** Mathematics

**Page:** 702

**View:** 6567

This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.

**Author**: George E. P. Box

**Publisher:** Wiley-Interscience

**ISBN:** N.A

**Category:** Mathematics

**Page:** 588

**View:** 9158

The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I Richard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Bruno de Finetti Theory of Probability, Volume 1 Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research Amos de Shalit & Herman Feshbach Theoretical Nuclear Physics, Volume 1—Nuclear Structure J. L. Doob Stochastic Processes Nelson Dunford & Jacob T. Schwartz Linear Operators, Part One, General Theory Nelson Dunford & Jacob T. Schwartz Linear Operators, Part Two, Spectral Theory—Self Adjoint Operators in Hilbert Space Nelson Dunford & Jacob T. Schwartz Linear Operators, Part Three, Spectral Operators Herman Feshbach Theoretical Nuclear Physics: Nuclear Reactions Bernard Friedman Lectures on Applications-Oriented Mathematics Phillip Griffiths & Joseph Harris Principles of Algebraic Geometry Gerald J. Hahn & Samuel S. Shapiro Statistical Models in Engineering Morris H. Hansen, William N. Hurwitz & Willim G. Madow Sample Survey Methods and Theory, Volume I—Methods and Applications Morris H. Hansen, William N. Hurwitz & William G. Madow Sample Survey Methods and Theory, Volume II—Theory Peter Henrici Applied and Computational Complex Analysis, Volume 1—Power Series—Integration—Conformal Mapping—Location of Zeros Peter Henrici Applied and Computational Complex Analysis, Volume 2—Special Functions—Integral Transforms—Asymptotics—Continued fractions Peter Henrici Applied and Computational Complex Analysis, Volume 3—Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions Peter Hilton & Yel-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Leslie Kish Survey Sampling Shoshichi Kobayashi & Katsumi Nomizu Foundations of Differential Geometry, Volume 1 Shoshichi Kobayashi & Katsumi Nomizu Foundations of Differential Geometry, Volume 2 Erwin O. Kreyszig Introductory Functional Analysis with Applications William H. Louisell Quantum Statistical Properties of Radiation Ali Hasan Nayfeh Introduction to Perturbation Techniques Ali Hasan Nayfeh & Dean T. Mook Nonlinear Oscillations Emanuel Parzen Modern Probability Theory and Its Applications P. M. Prenter Splines and Variational Methods Walter Rudin Fourier Analysis on Groups I. H. Segal Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems C. L. Siegel Topics in Complex Function Theory, Volume I—Elliptic Functions and Uniformization Theory C. L. Siegel Topics in Complex Function Theory, Volume II—Automorphic and Abelian Integrals C. L. Siegel Topics in Complex Function Theory, Volume III—Abelian Functions and Modular Functions of Several Variables J. J. Stoker Differential Geometry J. J. Stoker Water Waves: The Mathematical Theory with Applications J. J. Stoker Nonlinear Vibrations in Mechanical and Electrical Systems

**Author**: Peter Congdon

**Publisher:** John Wiley & Sons

**ISBN:** 0470035935

**Category:** Mathematics

**Page:** 596

**View:** 2207

Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology
*Theory, Methods and Applications*

**Author**: Kai Wang Ng,Guo-Liang Tian,Man-Lai Tang

**Publisher:** John Wiley & Sons

**ISBN:** 9781119998419

**Category:** Mathematics

**Page:** 336

**View:** 7183

The Dirichlet distribution appears in many areas of application, which include modelling of compositional data, Bayesian analysis, statistical genetics, and nonparametric inference. This book provides a comprehensive review of the Dirichlet distribution and two extended versions, the Grouped Dirichlet Distribution (GDD) and the Nested Dirichlet Distribution (NDD), arising from likelihood and Bayesian analysis of incomplete categorical data and survey data with non-response. The theoretical properties and applications are also reviewed in detail for other related distributions, such as the inverted Dirichlet distribution, Dirichlet-multinomial distribution, the truncated Dirichlet distribution, the generalized Dirichlet distribution, Hyper-Dirichlet distribution, scaled Dirichlet distribution, mixed Dirichlet distribution, Liouville distribution, and the generalized Liouville distribution. Key Features: Presents many of the results and applications that are scattered throughout the literature in one single volume. Looks at the most recent results such as survival function and characteristic function for the uniform distributions over the hyper-plane and simplex; distribution for linear function of Dirichlet components; estimation via the expectation-maximization gradient algorithm and application; etc. Likelihood and Bayesian analyses of incomplete categorical data by using GDD, NDD, and the generalized Dirichlet distribution are illustrated in detail through the EM algorithm and data augmentation structure. Presents a systematic exposition of the Dirichlet-multinomial distribution for multinomial data with extra variation which cannot be handled by the multinomial distribution. S-plus/R codes are featured along with practical examples illustrating the methods. Practitioners and researchers working in areas such as medical science, biological science and social science will benefit from this book.
*Paths, Dangers, Strategies*

**Author**: Nick Bostrom

**Publisher:** OUP Oxford

**ISBN:** 0191666831

**Category:** Computers

**Page:** 272

**View:** 770

The human brain has some capabilities that the brains of other animals lack. It is to these distinctive capabilities that our species owes its dominant position. Other animals have stronger muscles or sharper claws, but we have cleverer brains. If machine brains one day come to surpass human brains in general intelligence, then this new superintelligence could become very powerful. As the fate of the gorillas now depends more on us humans than on the gorillas themselves, so the fate of our species then would come to depend on the actions of the machine superintelligence. But we have one advantage: we get to make the first move. Will it be possible to construct a seed AI or otherwise to engineer initial conditions so as to make an intelligence explosion survivable? How could one achieve a controlled detonation? To get closer to an answer to this question, we must make our way through a fascinating landscape of topics and considerations. Read the book and learn about oracles, genies, singletons; about boxing methods, tripwires, and mind crime; about humanity's cosmic endowment and differential technological development; indirect normativity, instrumental convergence, whole brain emulation and technology couplings; Malthusian economics and dystopian evolution; artificial intelligence, and biological cognitive enhancement, and collective intelligence. This profoundly ambitious and original book picks its way carefully through a vast tract of forbiddingly difficult intellectual terrain. Yet the writing is so lucid that it somehow makes it all seem easy. After an utterly engrossing journey that takes us to the frontiers of thinking about the human condition and the future of intelligent life, we find in Nick Bostrom's work nothing less than a reconceptualization of the essential task of our time.

**Author**: Peter Congdon

**Publisher:** John Wiley & Sons

**ISBN:** 0470092386

**Category:** Mathematics

**Page:** 446

**View:** 820

The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.

**Author**: Donald W Jugenheimer,Larry D Kelley,Fogarty Klein Monroe

**Publisher:** Routledge

**ISBN:** 1317477642

**Category:** Antiques & Collectibles

**Page:** 288

**View:** 5100

This comprehensive book is designed to serve as a primary text for the Advertising Management course that follows the more general Principles of Advertising course. It can stand alone, or, for instructors who prefer a case-based approach, it can be adopted together with "Cases in Advertising Management" (978-0-7656-2261-7) by the same authors. "Advertising Management" covers a full range of topics for a semester-long course, including financial management, business planning, strategic planning, budgeting, human resource management, ethics, and managing change. There is even a unique section on 'managing yourself' and your own career in advertising. The text includes plentiful figures, tables, and sidebars, and each chapter concludes with useful learning objectives, summaries, discussion questions, and additional resources.
*Principles, Models, and Applications*

**Author**: S. James Press

**Publisher:** John Wiley & Sons

**ISBN:** 0470317949

**Category:** Mathematics

**Page:** 600

**View:** 7973

Shorter, more concise chapters provide flexible coverage of the subject. Expanded coverage includes: uncertainty and randomness, prior distributions, predictivism, estimation, analysis of variance, and classification and imaging. Includes topics not covered in other books, such as the de Finetti Transform. Author S. James Press is the modern guru of Bayesian statistics.

Full PDF Download Free

Privacy Policy

Copyright © 2019 Download PDF Site — Primer WordPress theme by GoDaddy