Bayesian Theory


Author: José M. Bernardo,Adrian F. M. Smith
Publisher: John Wiley & Sons
ISBN: 047031771X
Category: Mathematics
Page: 608
View: 5426

Continue Reading →

This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics

Bayesian statistics

principles, models, and applications
Author: S. James Press
Publisher: John Wiley & Sons Inc
ISBN: N.A
Category: Mathematics
Page: 237
View: 6936

Continue Reading →

An introduction to Bayesian statistics, with emphasis on interpretation of theory, and application of Bayesian ideas to practical problems. First part covers basic issues and principles, such as subjective probability, Bayesian inference and decision making, the likelihood principle, predictivism, and numerical methods of approximating posterior distributions, and includes a listing of Bayesian computer programs. Second part is devoted to models and applications, including univariate and multivariate regression models, the general linear model, Bayesian classification and discrimination, and a case study of how disputed authorship of some of the Federalist Papers was resolved via Bayesian analysis. Includes biographical material on Thomas Bayes, and a reproduction of Bayes's original essay. Contains exercises.

Bayes Linear Statistics, Theory and Methods


Author: Michael Goldstein,David Wooff
Publisher: John Wiley & Sons
ISBN: 9780470065679
Category: Mathematics
Page: 536
View: 3533

Continue Reading →

Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodology, and practicalities of this important field. The text provides a thorough coverage of Bayes linear analysis, from the development of the basic language to the collection of algebraic results needed for efficient implementation, with detailed practical examples. The book covers: The importance of partial prior specifications for complex problems where it is difficult to supply a meaningful full prior probability specification. Simple ways to use partial prior specifications to adjust beliefs, given observations. Interpretative and diagnostic tools to display the implications of collections of belief statements, and to make stringent comparisons between expected and actual observations. General approaches to statistical modelling based upon partial exchangeability judgements. Bayes linear graphical models to represent and display partial belief specifications, organize computations, and display the results of analyses. Bayes Linear Statistics is essential reading for all statisticians concerned with the theory and practice of Bayesian methods. There is an accompanying website hosting free software and guides to the calculations within the book.

Bayesian Statistics and Marketing


Author: Peter E. Rossi,Greg M. Allenby,Rob McCulloch
Publisher: John Wiley & Sons
ISBN: 0470863684
Category: Mathematics
Page: 368
View: 8751

Continue Reading →

The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources. Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product purchases and survey data, demand models based on micro-economic theory and random effect models used to pool data among respondents. The book also discusses the theory and practical use of MCMC methods. Written by the leading experts in the field, this unique book: Presents a unified treatment of Bayesian methods in marketing, with common notation and algorithms for estimating the models. Provides a self-contained introduction to Bayesian methods. Includes case studies drawn from the authors’ recent research to illustrate how Bayesian methods can be extended to apply to many important marketing problems. Is accompanied by an R package, bayesm, which implements all of the models and methods in the book and includes many datasets. In addition the book’s website hosts datasets and R code for the case studies. Bayesian Statistics and Marketing provides a platform for researchers in marketing to analyse their data with state-of-the-art methods and develop new models of consumer behaviour. It provides a unified reference for cutting-edge marketing researchers, as well as an invaluable guide to this growing area for both graduate students and professors, alike.

Bayesian Analysis for the Social Sciences


Author: Simon Jackman
Publisher: John Wiley & Sons
ISBN: 9780470686638
Category: Mathematics
Page: 598
View: 6017

Continue Reading →

Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.

Subjective and Objective Bayesian Statistics

Principles, Models, and Applications
Author: S. James Press
Publisher: John Wiley & Sons
ISBN: 0470317949
Category: Mathematics
Page: 600
View: 5236

Continue Reading →

Shorter, more concise chapters provide flexible coverage of the subject. Expanded coverage includes: uncertainty and randomness, prior distributions, predictivism, estimation, analysis of variance, and classification and imaging. Includes topics not covered in other books, such as the de Finetti Transform. Author S. James Press is the modern guru of Bayesian statistics.

Bayesian Networks

An Introduction
Author: Timo Koski,John Noble
Publisher: John Wiley and Sons
ISBN: 9780470684030
Category: Mathematics
Page: 366
View: 987

Continue Reading →

Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include: An introduction to Dirichlet Distribution, Exponential Families and their applications. A detailed description of learning algorithms and Conditional Gaussian Distributions using Junction Tree methods. A discussion of Pearl's intervention calculus, with an introduction to the notion of see and do conditioning. All concepts are clearly defined and illustrated with examples and exercises. Solutions are provided online. This book will prove a valuable resource for postgraduate students of statistics, computer engineering, mathematics, data mining, artificial intelligence, and biology. Researchers and users of comparable modelling or statistical techniques such as neural networks will also find this book of interest.

Theory of Probability

A critical introductory treatment
Author: Bruno de Finetti
Publisher: John Wiley & Sons
ISBN: 1119286344
Category: Mathematics
Page: 600
View: 8310

Continue Reading →

First issued in translation as a two-volume work in 1975, this classic book provides the first complete development of the theory of probability from a subjectivist viewpoint. It proceeds from a detailed discussion of the philosophical mathematical aspects to a detailed mathematical treatment of probability and statistics. De Finetti’s theory of probability is one of the foundations of Bayesian theory. De Finetti stated that probability is nothing but a subjective analysis of the likelihood that something will happen and that that probability does not exist outside the mind. It is the rate at which a person is willing to bet on something happening. This view is directly opposed to the classicist/ frequentist view of the likelihood of a particular outcome of an event, which assumes that the same event could be identically repeated many times over, and the 'probability' of a particular outcome has to do with the fraction of the time that outcome results from the repeated trials.

Comparative Statistical Inference


Author: Vic Barnett
Publisher: John Wiley & Sons
ISBN: 0470317795
Category: Mathematics
Page: 410
View: 2024

Continue Reading →

This fully updated and revised third edition, presents a wide ranging, balanced account of the fundamental issues across the full spectrum of inference and decision-making. Much has happened in this field since the second edition was published: for example, Bayesian inferential procedures have not only gained acceptance but are often the preferred methodology. This book will be welcomed by both the student and practising statistician wishing to study at a fairly elementary level, the basic conceptual and interpretative distinctions between the different approaches, how they interrelate, what assumptions they are based on, and the practical implications of such distinctions. As in earlier editions, the material is set in a historical context to more powerfully illustrate the ideas and concepts. Includes fully updated and revised material from the successful second edition Recent changes in emphasis, principle and methodology are carefully explained and evaluated Discusses all recent major developments Particular attention is given to the nature and importance of basic concepts (probability, utility, likelihood etc) Includes extensive references and bibliography Written by a well-known and respected author, the essence of this successful book remains unchanged providing the reader with a thorough explanation of the many approaches to inference and decision making.

Asymptotic theory of statistical inference


Author: B. L. S. Prakasa Rao
Publisher: John Wiley & Sons Inc
ISBN: N.A
Category: Mathematics
Page: 438
View: 2763

Continue Reading →

Probability and stochastic processes; Limit theorems for some statistics; Asymptotic theory of estimation; Linear parametric inference; Martingale approach to inference; Inference in nonlinear regression; Von mises functionals; Empirical characteristic function and its applications.

Statistics of Extremes

Theory and Applications
Author: Jan Beirlant,Yuri Goegebeur,Johan Segers,Jozef Teugels
Publisher: John Wiley & Sons
ISBN: 0470012374
Category: Mathematics
Page: 522
View: 7086

Continue Reading →

Research in the statistical analysis of extreme values has flourished over the past decade: new probability models, inference and data analysis techniques have been introduced; and new application areas have been explored. Statistics of Extremes comprehensively covers a wide range of models and application areas, including risk and insurance: a major area of interest and relevance to extreme value theory. Case studies are introduced providing a good balance of theory and application of each model discussed, incorporating many illustrated examples and plots of data. The last part of the book covers some interesting advanced topics, including time series, regression, multivariate and Bayesian modelling of extremes, the use of which has huge potential.

Bayesian Analysis of Stochastic Process Models


Author: David Insua,Fabrizio Ruggeri,Mike Wiper
Publisher: John Wiley & Sons
ISBN: 1118304039
Category: Mathematics
Page: 320
View: 7950

Continue Reading →

Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

Statistical Inference for Branching Processes


Author: Peter Guttorp
Publisher: Wiley-Interscience
ISBN: N.A
Category: Mathematics
Page: 224
View: 349

Continue Reading →

An examination of the difficulties that statistical theory and, in particular, estimation theory can encounter within the area of dependent data. This is achieved through the study of the theory of branching processes starting with the demographic question: what is the probability that a family name becomes extinct? Contains observations on the generation sizes of the Bienaym?-Galton-Watson (BGW) process. Various parameters are estimated and branching process theory is contrasted to a Bayesian approach. Illustrations of branching process theory applications are shown for particular problems.

Basic and Advanced Bayesian Structural Equation Modeling

With Applications in the Medical and Behavioral Sciences
Author: Sik-Yum Lee,Xin-Yuan Song
Publisher: John Wiley & Sons
ISBN: 1118358872
Category: Mathematics
Page: 400
View: 1988

Continue Reading →

This book provides clear instructions to researchers on how to apply Structural Equation Models (SEMs) for analyzing the inter relationships between observed and latent variables. Basic and Advanced Bayesian Structural Equation Modeling introduces basic and advanced SEMs for analyzing various kinds of complex data, such as ordered and unordered categorical data, multilevel data, mixture data, longitudinal data, highly non-normal data, as well as some of their combinations. In addition, Bayesian semiparametric SEMs to capture the true distribution of explanatory latent variables are introduced, whilst SEM with a nonparametric structural equation to assess unspecified functional relationships among latent variables are also explored. Statistical methodologies are developed using the Bayesian approach giving reliable results for small samples and allowing the use of prior information leading to better statistical results. Estimates of the parameters and model comparison statistics are obtained via powerful Markov Chain Monte Carlo methods in statistical computing. Introduces the Bayesian approach to SEMs, including discussion on the selection of prior distributions, and data augmentation. Demonstrates how to utilize the recent powerful tools in statistical computing including, but not limited to, the Gibbs sampler, the Metropolis-Hasting algorithm, and path sampling for producing various statistical results such as Bayesian estimates and Bayesian model comparison statistics in the analysis of basic and advanced SEMs. Discusses the Bayes factor, Deviance Information Criterion (DIC), and $L_\nu$-measure for Bayesian model comparison. Introduces a number of important generalizations of SEMs, including multilevel and mixture SEMs, latent curve models and longitudinal SEMs, semiparametric SEMs and those with various types of discrete data, and nonparametric structural equations. Illustrates how to use the freely available software WinBUGS to produce the results. Provides numerous real examples for illustrating the theoretical concepts and computational procedures that are presented throughout the book. Researchers and advanced level students in statistics, biostatistics, public health, business, education, psychology and social science will benefit from this book.

Multiple Imputation for Nonresponse in Surveys


Author: Donald B. Rubin
Publisher: John Wiley & Sons
ISBN: 0470317361
Category: Mathematics
Page: 258
View: 698

Continue Reading →

Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.

Aspects of Statistical Inference


Author: A. H. Welsh
Publisher: John Wiley & Sons
ISBN: 1118165438
Category: Mathematics
Page: 480
View: 6175

Continue Reading →

Relevant, concrete, and thorough--the essential data-based text on statistical inference The ability to formulate abstract concepts and draw conclusions from data is fundamental to mastering statistics. Aspects of Statistical Inference equips advanced undergraduate and graduate students with a comprehensive grounding in statistical inference, including nonstandard topics such as robustness, randomization, and finite population inference. A. H. Welsh goes beyond the standard texts and expertly synthesizes broad, critical theory with concrete data and relevant topics. The text follows a historical framework, uses real-data sets and statistical graphics, and treats multiparameter problems, yet is ultimately about the concepts themselves. Written with clarity and depth, Aspects of Statistical Inference: * Provides a theoretical and historical grounding in statistical inference that considers Bayesian, fiducial, likelihood, and frequentist approaches * Illustrates methods with real-data sets on diabetic retinopathy, the pharmacological effects of caffeine, stellar velocity, and industrial experiments * Considers multiparameter problems * Develops large sample approximations and shows how to use them * Presents the philosophy and application of robustness theory * Highlights the central role of randomization in statistics * Uses simple proofs to illuminate foundational concepts * Contains an appendix of useful facts concerning expansions, matrices, integrals, and distribution theory Here is the ultimate data-based text for comparing and presenting the latest approaches to statistical inference.

An Elementary Introduction to Statistical Learning Theory


Author: Sanjeev Kulkarni,Gilbert Harman
Publisher: John Wiley & Sons
ISBN: 9781118023464
Category: Mathematics
Page: 288
View: 6560

Continue Reading →

A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary machine learning and uniquely utilize its foundations as a framework for philosophical thinking about inductive inference. Promoting the fundamental goal of statistical learning, knowing what is achievable and what is not, this book demonstrates the value of a systematic methodology when used along with the needed techniques for evaluating the performance of a learning system. First, an introduction to machine learning is presented that includes brief discussions of applications such as image recognition, speech recognition, medical diagnostics, and statistical arbitrage. To enhance accessibility, two chapters on relevant aspects of probability theory are provided. Subsequent chapters feature coverage of topics such as the pattern recognition problem, optimal Bayes decision rule, the nearest neighbor rule, kernel rules, neural networks, support vector machines, and boosting. Appendices throughout the book explore the relationship between the discussed material and related topics from mathematics, philosophy, psychology, and statistics, drawing insightful connections between problems in these areas and statistical learning theory. All chapters conclude with a summary section, a set of practice questions, and a reference sections that supplies historical notes and additional resources for further study. An Elementary Introduction to Statistical Learning Theory is an excellent book for courses on statistical learning theory, pattern recognition, and machine learning at the upper-undergraduate and graduate levels. It also serves as an introductory reference for researchers and practitioners in the fields of engineering, computer science, philosophy, and cognitive science that would like to further their knowledge of the topic.

The Subjectivity of Scientists and the Bayesian Approach


Author: S. James Press,Judith M. Tanur
Publisher: Courier Dover Publications
ISBN: 0486810453
Category: Mathematics
Page: 288
View: 9369

Continue Reading →

Intriguing examination of works by Aristotle, Galileo, Newton, Pasteur, Einstein, Margaret Mead, and other scientists in terms of subjectivity and the Bayesian approach to statistical analysis. "An insightful work." — Choice. 2001 edition.

Bayesian Models for Categorical Data


Author: Peter Congdon
Publisher: John Wiley & Sons
ISBN: 0470092386
Category: Mathematics
Page: 446
View: 8939

Continue Reading →

The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.

The Theory of Probability


Author: Harold Jeffreys
Publisher: OUP Oxford
ISBN: 0191589675
Category: Mathematics
Page: 470
View: 3414

Continue Reading →

Another title in the reissued Oxford Classic Texts in the Physical Sciences series, Jeffrey's Theory of Probability, first published in 1939, was the first to develop a fundamental theory of scientific inference based on the ideas of Bayesian statistics. His ideas were way ahead of their time and it is only in the past ten years that the subject of Bayes' factors has been significantly developed and extended. Until recently the two schools of statistics (Bayesian and Frequentist) were distinctly different and set apart. Recent work (aided by increased computer power and availability) has changed all that and today's graduate students and researchers all require an understanding of Bayesian ideas. This book is their starting point.