Axiomatic Set Theory


Author: Patrick Suppes
Publisher: Courier Corporation
ISBN: 0486136876
Category: Mathematics
Page: 265
View: 6897

Continue Reading →

Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.

Axiomatic Set Theory


Author: Paul Bernays
Publisher: Dover Publications
ISBN: 9780486666372
Category: Mathematics
Page: 256
View: 3291

Continue Reading →

A monograph containing a historical introduction by A. A. Fraenkel to the original Zermelo-Fraenkel form of set-theoretic axiomatics, and Paul Bernays’ independent presentation of a formal system of axiomatic set theory. No special knowledge of set thory and its axiomatics is required. With indexes of authors, symbols and matters, a list of axioms and an extensive bibliography.

A Book of Set Theory


Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486497089
Category: Mathematics
Page: 256
View: 6325

Continue Reading →

"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--

Naive Mengenlehre


Author: Paul R. Halmos
Publisher: Vandenhoeck & Ruprecht
ISBN: 9783525405277
Category: Arithmetic
Page: 132
View: 7250

Continue Reading →

Set Theory and Logic


Author: Robert R. Stoll
Publisher: Courier Corporation
ISBN: 0486139646
Category: Mathematics
Page: 512
View: 9275

Continue Reading →

Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.

The Philosophy of Set Theory

An Historical Introduction to Cantor's Paradise
Author: Mary Tiles
Publisher: Courier Corporation
ISBN: 0486138550
Category: Mathematics
Page: 256
View: 6025

Continue Reading →

DIVBeginning with perspectives on the finite universe and classes and Aristotelian logic, the author examines permutations, combinations, and infinite cardinalities; numbering the continuum; Cantor's transfinite paradise; axiomatic set theory, and more. /div

Principia Mathematica.


Author: Alfred North Whitehead,Bertrand Russell
Publisher: N.A
ISBN: N.A
Category: Logic, Symbolic and mathematical
Page: 167
View: 6319

Continue Reading →

Basic Set Theory


Author: Azriel Levy
Publisher: Courier Corporation
ISBN: 0486150739
Category: Mathematics
Page: 416
View: 7894

Continue Reading →

The first part of this advanced-level text covers pure set theory, and the second deals with applications and advanced topics (point set topology, real spaces, Boolean algebras, infinite combinatorics and large cardinals). 1979 edition.

Grundzüge der Mengenlehre


Author: Felix Hausdorff
Publisher: American Mathematical Soc.
ISBN: 9780828400619
Category: Mathematics
Page: 476
View: 3251

Continue Reading →

This reprint of the original 1914 edition of this famous work contains many topics that had to be omitted from later editions, notably, Symmetric Sets, Principle of Duality, most of the ``Algebra'' of Sets, Partially Ordered Sets, Arbitrary Sets of Complexes, Normal Types, Initial and Final Ordering, Complexes of Real Numbers, General Topological Spaces, Euclidean Spaces, the Special Methods Applicable in the Euclidean Plane, Jordan's Separation Theorem, the Theory of Content and Measure, the Theory of the Lebesgue Integral. The text is in German.

An Outline of Set Theory


Author: James M. Henle
Publisher: Courier Corporation
ISBN: 0486453375
Category: Mathematics
Page: 145
View: 2029

Continue Reading →

An innovative problem-oriented introduction to set theory, this volume is intended for undergraduate courses in which students work in groups on projects and present their solutions to the class. The three-part treatment consists of problems, hints for their solutions, and complete answers. 1986 edition.

Aufzählbarkeit, Entscheidbarkeit, Berechenbarkeit

Einführung in die Theorie der Rekursiven Funktionen
Author: Hans Hermes
Publisher: Springer-Verlag
ISBN: 3662014629
Category: Mathematics
Page: 246
View: 1923

Continue Reading →

In der Mathematik ist es immer als eine besonders interessante und wichtige Aufgabe angesehen worden, Algorithmen zur Lösung von Pro blemen zu entwickeln. Dabei ist ein Algorithmus im Normalfall nur auf einen eng umschriebenen Problemkreis anwendbar, wie etwa der Euklidi sche Algorithmus zur Bestimmung des größten gemeinsamen Teilers zweier Zahlen oder das bekannte Verfahren, mit dessen Hilfe die Qua dratwurzeln aus natürlichen Zahlen in Dezimaldarstellung gewonnen werden können. So wichtig derartige spezielle Algorithmen auch sein mögen - so wäre es dennoch wünschenswert, über Algorithmen mit großer Tragweite zu verfügen. Um solche Algorithmen, die sich mög lichst vielfältig anwenden lassen, hat man sich jahrhundertelang ohne rechten Erfolg bemüht. Erst in der zweiten Hälfte des letzten Jahr hunderts wurde ein bemerkenswerter Fortschritt erzielt, als es gelang, mit der Prädikatenlogik einen wichtigen Teil der logischen Schlu߭ prozesse in die Gestalt eines Kalküls zu bringen. (Dabei spielte die Boolesche Algebra eine wesentliche Pionierrolle. ) Man hätte nun viel leicht vermuten können, daß alle mathematischen Probleme algorith misch lösbar seien. Doch mahnten wohlbekannte noch ungelöste Pro bleme (etwa das Wortproblem der Gruppentheorie, oder das zehnte Hilbertsche Problem, das die Frage nach der Lösbarkeit von diophanti schen Gleichungen betrifft) zur Vorsicht. Immerhin war nun der Anstoß gegeben, die Frage nach dem Wesen des Algorithmus aufzuwerfen. Diese Frage hatte schon Leibniz gestellt, aber nicht zu lösen vermocht.

Set Theory and the Continuum Hypothesis


Author: Paul J. Cohen,Martin Davis
Publisher: Courier Corporation
ISBN: 0486469212
Category: Mathematics
Page: 154
View: 338

Continue Reading →

This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.

A Profile of Mathematical Logic


Author: Howard DeLong
Publisher: Courier Corporation
ISBN: 0486139158
Category: Mathematics
Page: 320
View: 3842

Continue Reading →

This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.

The Axiom of Choice


Author: Thomas J. Jech
Publisher: Courier Corporation
ISBN: 0486318257
Category: Mathematics
Page: 224
View: 9728

Continue Reading →

Comprehensive and self-contained text examines the axiom's relative strengths and consequences, including its consistency and independence, relation to permutation models, and examples and counterexamples of its use. 1973 edition.

Concepts of Modern Mathematics


Author: Ian Stewart
Publisher: Courier Corporation
ISBN: 0486134954
Category: Mathematics
Page: 368
View: 2132

Continue Reading →

In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.

Logic for Mathematicians


Author: J. Barkley Rosser
Publisher: Courier Dover Publications
ISBN: 0486468984
Category: Mathematics
Page: 574
View: 9985

Continue Reading →

Hailed by the Bulletin of the American Mathematical Society as "undoubtedly a major addition to the literature of mathematical logic," this volume examines the essential topics and theorems of mathematical reasoning. No background in logic is assumed, and the examples are chosen from a variety of mathematical fields. Starting with an introduction to symbolic logic, the first eight chapters develop logic through the restricted predicate calculus. Topics include the statement calculus, the use of names, an axiomatic treatment of the statement calculus, descriptions, and equality. Succeeding chapters explore abstract set theory—with examinations of class membership as well as relations and functions—cardinal and ordinal arithmetic, and the axiom of choice. An invaluable reference book for all mathematicians, this text is suitable for advanced undergraduates and graduate students. Numerous exercises make it particularly appropriate for classroom use.

Introduction to Logic


Author: Patrick Suppes
Publisher: Courier Corporation
ISBN: 0486138054
Category: Mathematics
Page: 336
View: 2860

Continue Reading →

Part I of this coherent, well-organized text deals with formal principles of inference and definition. Part II explores elementary intuitive set theory, with separate chapters on sets, relations, and functions. Ideal for undergraduates.

Nonstandard Analysis


Author: Alain Robert
Publisher: Courier Corporation
ISBN: 9780486432793
Category: Mathematics
Page: 156
View: 6728

Continue Reading →

This concise text is based on the axiomatic internal set theory approach. Theoretical topics include idealization, standardization, and transfer, real numbers and numerical functions, continuity, differentiability, and integration. Applications cover invariant means, approximation of functions, differential equations, more. Exercises, hints, and solutions. "Mathematics teaching at its best." — European Journal of Physics. 1988 edition.