**Author**: Roger Godement

**Publisher:**Springer Science & Business Media

**ISBN:**9783540059233

**Category:**Mathematics

**Page:**430

**View:**6566

Skip to content
# Search Results for: analysis-i-convergence-elementary-functions-pt-1-universitext

**Author**: Roger Godement

**Publisher:** Springer Science & Business Media

**ISBN:** 9783540059233

**Category:** Mathematics

**Page:** 430

**View:** 6566

The main topic of these two English-language volumes are Functions in R and C, including the theory of Fourier series, Fourier integrals and part of holomorphic functions. Based on a course given by the author, the exposition proceeds somewhat nonlinearly, blending rigorous mathematics skilfully with didactical and historical considerations. It sets out to illustrate the variety of possible approaches to the main results, in order to initiate the reader to methods, the underlying reasoning, and fundamental ideas. It is suitable for both teaching and self-study. The French edition in four volumes, published from 1998, has met with resounding success.

**Author**: Yvonne Choquet-Bruhat,Cécile DeWitt-Morette,Margaret Dillard Bleick

**Publisher:** Gulf Professional Publishing

**ISBN:** 9780444860170

**Category:** Mathematics

**Page:** 630

**View:** 4973

This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled ``Connections on Principle Fibre Bundles'' which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.

**Author**: V. A. Zorich

**Publisher:** Springer

**ISBN:** 3662487926

**Category:** Mathematics

**Page:** 616

**View:** 5395

This second edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh applications to areas seldom touched on in textbooks on real analysis. The main difference between the second and first editions is the addition of a series of appendices to each volume. There are six of them in the first volume and five in the second. The subjects of these appendices are diverse. They are meant to be useful to both students (in mathematics and physics) and teachers, who may be motivated by different goals. Some of the appendices are surveys, both prospective and retrospective. The final survey establishes important conceptual connections between analysis and other parts of mathematics. The first volume constitutes a complete course in one-variable calculus along with the multivariable differential calculus elucidated in an up-to-date, clear manner, with a pleasant geometric and natural sciences flavor.
*Differential and Integral Calculus, Fourier Series, Holomorphic Functions*

**Author**: Roger Godement

**Publisher:** Springer Science & Business Media

**ISBN:** 3540299262

**Category:** Mathematics

**Page:** 448

**View:** 3254

Functions in R and C, including the theory of Fourier series, Fourier integrals and part of that of holomorphic functions, form the focal topic of these two volumes. Based on a course given by the author to large audiences at Paris VII University for many years, the exposition proceeds somewhat nonlinearly, blending rigorous mathematics skilfully with didactical and historical considerations. It sets out to illustrate the variety of possible approaches to the main results, in order to initiate the reader to methods, the underlying reasoning, and fundamental ideas. It is suitable for both teaching and self-study. In his familiar, personal style, the author emphasizes ideas over calculations and, avoiding the condensed style frequently found in textbooks, explains these ideas without parsimony of words. The French edition in four volumes, published from 1998, has met with resounding success: the first two volumes are now available in English.
*A High School Course*

**Author**: Serge Lang,Gene Murrow

**Publisher:** Springer Science & Business Media

**ISBN:** 147572022X

**Category:** Science

**Page:** 394

**View:** 2783

At last: geometry in an exemplary, accessible and attractive form! The authors emphasise both the intellectually stimulating parts of geometry and routine arguments or computations in concrete or classical cases, as well as practical and physical applications. They also show students the fundamental concepts and the difference between important results and minor technical routines. Altogether, the text presents a coherent high school curriculum for the geometry course, naturally backed by numerous examples and exercises.

**Author**: J.B. Conway

**Publisher:** Springer Science & Business Media

**ISBN:** 1461599725

**Category:** Mathematics

**Page:** 313

**View:** 4780

This book is intended as a textbook for a first course in the theory of functions of one complex variable for students who are mathematically mature enough to understand and execute E - I) arguments. The actual pre requisites for reading this book are quite minimal; not much more than a stiff course in basic calculus and a few facts about partial derivatives. The topics from advanced calculus that are used (e.g., Leibniz's rule for differ entiating under the integral sign) are proved in detail. Complex Variables is a subject which has something for all mathematicians. In addition to having applications to other parts of analysis, it can rightly claim to be an ancestor of many areas of mathematics (e.g., homotopy theory, manifolds). This view of Complex Analysis as "An Introduction to Mathe matics" has influenced the writing and selection of subject matter for this book. The other guiding principle followed is that all definitions, theorems, etc.
*An Introduction*

**Author**: Daniel Huybrechts

**Publisher:** Springer Science & Business Media

**ISBN:** 3540266879

**Category:** Mathematics

**Page:** 309

**View:** 1574

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

**Author**: V. A. Zorich

**Publisher:** Springer

**ISBN:** 3662489937

**Category:** Mathematics

**Page:** 720

**View:** 9903

This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh applications to areas seldom touched on in textbooks on real analysis. The main difference between the second and first English editions is the addition of a series of appendices to each volume. There are six of them in the first volume and five in the second. The subjects of these appendices are diverse. They are meant to be useful to both students (in mathematics and physics) and teachers, who may be motivated by different goals. Some of the appendices are surveys, both prospective and retrospective. The final survey establishes important conceptual connections between analysis and other parts of mathematics. This second volume presents classical analysis in its current form as part of a unified mathematics. It shows how analysis interacts with other modern fields of mathematics such as algebra, differential geometry, differential equations, complex analysis, and functional analysis. This book provides a firm foundation for advanced work in any of these directions.
*Integration and Spectral Theory, Harmonic Analysis, the Garden of Modular Delights*

**Author**: Roger Godement

**Publisher:** Springer

**ISBN:** 3319169076

**Category:** Mathematics

**Page:** 527

**View:** 477

Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be `modern' and `classical', is universally useful whereas the second part leads the reader towards a very active and specialized field of research, with possibly broad generalizations.

**Author**: Krishna B. Athreya,Soumendra N. Lahiri

**Publisher:** Springer Science & Business Media

**ISBN:** 038732903X

**Category:** Business & Economics

**Page:** 618

**View:** 3547

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.

**Author**: Elias M. Stein,Rami Shakarchi

**Publisher:** Princeton University Press

**ISBN:** 1400831156

**Category:** Mathematics

**Page:** 400

**View:** 3316

With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

**Author**: Loring W. Tu

**Publisher:** Springer Science & Business Media

**ISBN:** 1441974008

**Category:** Mathematics

**Page:** 410

**View:** 929

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
*Analytic and Differential Functions, Manifolds and Riemann Surfaces*

**Author**: Roger Godement

**Publisher:** Springer

**ISBN:** 3319160532

**Category:** Mathematics

**Page:** 321

**View:** 9182

Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R).

**Author**: D. J. H. Garling

**Publisher:** Cambridge University Press

**ISBN:** 1107032040

**Category:** Mathematics

**Page:** 332

**View:** 3009

"The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. Volume I focuses on the analysis of real-valued functions of a real variable. Besides developing the basic theoryit describes many applications, including a chapter on Fourier series. It also includes a Prologue in which the author introduces the axioms of set theory and uses them to construct the real number system. Volume II goes on to consider metric and topological spaces, and functions of several variables. Volume III covers complex analysis and the theory of measure and integration"--
*Introduction to Advanced Mathematics*

**Author**: Paul Sally

**Publisher:** American Mathematical Soc.

**ISBN:** 0821846345

**Category:** Mathematics

**Page:** 193

**View:** 1008

This book provides a transition from the formula-full aspects of the beginning study of college level mathematics to the rich and creative world of more advanced topics. It is designed to assist the student in mastering the techniques of analysis and proof that are required to do mathematics. Along with the standard material such as linear algebra, construction of the real numbers via Cauchy sequences, metric spaces and complete metric spaces, there are three projects at the end of each chapter that form an integral part of the text. These projects include a detailed discussion of topics such as group theory, convergence of infinite series, decimal expansions of real numbers, point set topology and topological groups. They are carefully designed to guide the student through the subject matter. Together with numerous exercises included in the book, these projects may be used as part of the regular classroom presentation, as self-study projects for students, or for Inquiry Based Learning activities presented by the students.

**Author**: Sterling K. Berberian

**Publisher:** American Mathematical Soc.

**ISBN:** 9780821853283

**Category:** Mathematics

**Page:** 312

**View:** 3867

This highly flexible text is organized into two parts: Part I is suitable for a one-semester course at the first-year graduate level, and the book as a whole is suitable for a full-year course. Part I treats the theory of measure and integration over abstract measure spaces. Prerequisites are a familiarity with epsilon-delta arguments and with the language of naive set theory (union, intersection, function). The fundamental theorems of the subject are derived from first principles, with details in full. Highlights include convergence theorems (monotone, dominated), completeness of classical function spaces (Riesz-Fischer theorem), product measures (Fubini's theorem), and signed measures (Radon-Nikodym theorem). Part II is more specialized; it includes regular measures on locally compact spaces, the Riesz-Markoff theorem on the measure-theoretic representation of positive linear forms, and Haar measure on a locally compact group. The group algebra of a locally compact group is constructed in the last chapter, by an especially transparent method that minimizes measure-theoretic difficulties. Prerequisites for Part II include Part I plus a course in general topology. To quote from the Preface: ``Finally, I am under no illusions as to originality, for the subject of measure theory is an old one which has been worked over by many experts. My contribution can only be in selection, arrangement, and emphasis. I am deeply indebted to Paul R. Halmos, from whose textbook I first studied measure theory; I hope that these pages may reflect their debt to his book without seeming to be almost everywhere equal to it.''

**Author**: Jean Jacod,Philip Protter

**Publisher:** Springer Science & Business Media

**ISBN:** 3642556825

**Category:** Mathematics

**Page:** 254

**View:** 3240

This introduction can be used, at the beginning graduate level, for a one-semester course on probability theory or for self-direction without benefit of a formal course; the measure theory needed is developed in the text. It will also be useful for students and teachers in related areas such as finance theory, electrical engineering, and operations research. The text covers the essentials in a directed and lean way with 28 short chapters, and assumes only an undergraduate background in mathematics. Readers are taken right up to a knowledge of the basics of Martingale Theory, and the interested student will be ready to continue with the study of more advanced topics, such as Brownian Motion and Ito Calculus, or Statistical Inference.

**Author**: Stephen P. Boyd,Lieven Vandenberghe

**Publisher:** Cambridge University Press

**ISBN:** 9780521833783

**Category:** Business & Economics

**Page:** 716

**View:** 1165

A comprehensive introduction to the tools, techniques and applications of convex optimization.

**Author**: A. C. M. van Rooij,W. H. Schikhof

**Publisher:** CUP Archive

**ISBN:** 9780521283618

**Category:** Mathematics

**Page:** 200

**View:** 6337

When considering a mathematical theorem one ought not only to know how to prove it but also why and whether any given conditions are necessary. All too often little attention is paid to to this side of the theory and in writing this account of the theory of real functions the authors hope to rectify matters. They have put the classical theory of real functions in a modern setting and in so doing have made the mathematical reasoning rigorous and explored the theory in much greater depth than is customary. The subject matter is essentially the same as that of ordinary calculus course and the techniques used are elementary (no topology, measure theory or functional analysis). Thus anyone who is acquainted with elementary calculus and wishes to deepen their knowledge should read this.
*Theoretical and Practical Aspects*

**Author**: Joseph-Frédéric Bonnans,Jean Charles Gilbert,Claude Lemarechal,Claudia A. Sagastizábal

**Publisher:** Springer Science & Business Media

**ISBN:** 3662050781

**Category:** Mathematics

**Page:** 423

**View:** 6883

This book starts with illustrations of the ubiquitous character of optimization, and describes numerical algorithms in a tutorial way. It covers fundamental algorithms as well as more specialized and advanced topics for unconstrained and constrained problems. This new edition contains computational exercises in the form of case studies which help understanding optimization methods beyond their theoretical description when coming to actual implementation.

Full PDF Download Free

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy