**Author**: Vijay K. Rohatgi,A.K. Md. Ehsanes Saleh

**Publisher:**John Wiley & Sons

**ISBN:**1118799682

**Category:**Mathematics

**Page:**728

**View:**6695

Skip to content
# Search Results for: an-introduction-to-probability-and-statistics

**Author**: Vijay K. Rohatgi,A.K. Md. Ehsanes Saleh

**Publisher:** John Wiley & Sons

**ISBN:** 1118799682

**Category:** Mathematics

**Page:** 728

**View:** 6695

A well-balanced introduction to probability theory and mathematical statistics Featuring updated material, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided intothree parts, the Third Edition begins by presenting the fundamentals and foundationsof probability. The second part addresses statistical inference, and the remainingchapters focus on special topics. An Introduction to Probability and Statistics, Third Edition includes: A new section on regression analysis to include multiple regression, logistic regression, and Poisson regression A reorganized chapter on large sample theory to emphasize the growing role of asymptotic statistics Additional topical coverage on bootstrapping, estimation procedures, and resampling Discussions on invariance, ancillary statistics, conjugate prior distributions, and invariant confidence intervals Over 550 problems and answers to most problems, as well as 350 worked out examples and 200 remarks Numerous figures to further illustrate examples and proofs throughout An Introduction to Probability and Statistics, Third Edition is an ideal reference and resource for scientists and engineers in the fields of statistics, mathematics, physics, industrial management, and engineering. The book is also an excellent text for upper-undergraduate and graduate-level students majoring in probability and statistics.

**Author**: V. K. Rohatgi

**Publisher:** John Wiley & Sons Inc

**ISBN:** N.A

**Category:** Mathematics

**Page:** 684

**View:** 1357

Probability; Random variables and their probability distributions; Moments and generating functions; Random vectors; Some special distributions; Limit theorems; Sample moments and their distributions; The theory of point estimation; Neyman-Pearson theory of testing of hypotheses; Some further results on hypotheses testing; Confidence estimation; The general linear hypothesis; Nonparametric statistical inference; Sequential statistical inference.
*Introduction to Probability and Statistics*

**Author**: Hans-Otto Georgii

**Publisher:** Walter de Gruyter

**ISBN:** 3110293609

**Category:** Mathematics

**Page:** 416

**View:** 9225

This second revised and extended edition presents the fundamental ideas and results of both, probability theory and statistics, and comprises the material of a one-year course. It is addressed to students with an interest in the mathematical side of stochastics. Stochastic concepts, models and methods are motivated by examples and developed and analysed systematically. Some measure theory is included, but this is done at an elementary level that is in accordance with the introductory character of the book. A large number of problems offer applications and supplements to the text.

**Author**: Géza Schay

**Publisher:** Birkhäuser

**ISBN:** 3319306200

**Category:** Mathematics

**Page:** 385

**View:** 879

Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises“/p> Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications. Review of the first edition: This textbook is a classical and well-written introduction to probability theory and statistics. ... the book is written ‘for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.’ ... Each new concept is clearly explained and is followed by many detailed examples. ... numerous examples of calculations are given and proofs are well-detailed." (Sophie Lemaire, Mathematical Reviews, Issue 2008 m)
*an introduction to probability and statistical inference*

**Author**: Donald R. Byrkit

**Publisher:** N.A

**ISBN:** N.A

**Category:** Mathematics

**Page:** 324

**View:** 2800

**Author**: George G. Roussas

**Publisher:** Academic Press

**ISBN:** 0128004371

**Category:** Mathematics

**Page:** 624

**View:** 5806

An Introduction to Probability and Statistical Inference, Second Edition, guides you through probability models and statistical methods and helps you to think critically about various concepts. Written by award-winning author George Roussas, this book introduces readers with no prior knowledge in probability or statistics to a thinking process to help them obtain the best solution to a posed question or situation. It provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. This text contains an enhanced number of exercises and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities. Reorganized material is included in the statistical portion of the book to ensure continuity and enhance understanding. Each section includes relevant proofs where appropriate, followed by exercises with useful clues to their solutions. Furthermore, there are brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises are available to instructors in an Answers Manual. This text will appeal to advanced undergraduate and graduate students, as well as researchers and practitioners in engineering, business, social sciences or agriculture. Content, examples, an enhanced number of exercises, and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities Reorganized material in the statistical portion of the book to ensure continuity and enhance understanding A relatively rigorous, yet accessible and always within the prescribed prerequisites, mathematical discussion of probability theory and statistical inference important to students in a broad variety of disciplines Relevant proofs where appropriate in each section, followed by exercises with useful clues to their solutions Brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises available to instructors in an Answers Manual

**Author**: G. Jay Kerns

**Publisher:** Lulu.com

**ISBN:** 0557249791

**Category:**

**Page:** N.A

**View:** 3164

**Author**: William Feller

**Publisher:** N.A

**ISBN:** N.A

**Category:** Probabilities

**Page:** 626

**View:** 9476

**Author**: Giri

**Publisher:** CRC Press

**ISBN:** 9780824790370

**Category:** Mathematics

**Page:** 560

**View:** 7148

Beginning with the historical background of probability theory, this thoroughly revised text examines all important aspects of mathematical probability - including random variables, probability distributions, characteristic and generating functions, stochatic convergence, and limit theorems - and provides an introduction to various types of statistical problems, covering the broad range of statistical inference.;Requiring a prerequisite in calculus for complete understanding of the topics discussed, the Second Edition contains new material on: univariate distributions; multivariate distributions; large-sample methods; decision theory; and applications of ANOVA.;A primary text for a year-long undergraduate course in statistics (but easily adapted for a one-semester course in probability only), Introduction to Probability and Statistics is for undergraduate students in a wide range of disciplines-statistics, probability, mathematics, social science, economics, engineering, agriculture, biometry, and education.

**Author**: Walter A. Rosenkrantz

**Publisher:** CRC Press

**ISBN:** 9781584888130

**Category:** Mathematics

**Page:** 680

**View:** 3724

Integrating interesting and widely used concepts of financial engineering into traditional statistics courses, Introduction to Probability and Statistics for Science, Engineering, and Finance illustrates the role and scope of statistics and probability in various fields. The text first introduces the basics needed to understand and create tables and graphs produced by standard statistical software packages, such as Minitab, SAS, and JMP. It then takes students through the traditional topics of a first course in statistics. Novel features include: Applications of standard statistical concepts and methods to the analysis and interpretation of financial data, such as risks and returns Cox–Ross–Rubinstein (CRR) model, also called the binomial lattice model, of stock price fluctuations An application of the central limit theorem to the CRR model that yields the lognormal distribution for stock prices and the famous Black–Scholes option pricing formula An introduction to modern portfolio theory Mean-standard deviation diagram of a collection of portfolios Computing a stock’s betavia simple linear regression As soon as he develops the statistical concepts, the author presents applications to engineering, such as queuing theory, reliability theory, and acceptance sampling; computer science; public health; and finance. Using both statistical software packages and scientific calculators, he reinforces fundamental concepts with numerous examples.

**Author**: Sheldon M. Ross

**Publisher:** Academic Press

**ISBN:** 9780080919379

**Category:** Mathematics

**Page:** 680

**View:** 2562

This updated text provides a superior introduction to applied probability and statistics for engineering or science majors. Ross emphasizes the manner in which probability yields insight into statistical problems; ultimately resulting in an intuitive understanding of the statistical procedures most often used by practicing engineers and scientists. Real data sets are incorporated in a wide variety of exercises and examples throughout the book, and this emphasis on data motivates the probability coverage. As with the previous editions, Ross' text has remendously clear exposition, plus real-data examples and exercises throughout the text. Numerous exercises, examples, and applications apply probability theory to everyday statistical problems and situations. New to the 4th Edition: - New Chapter on Simulation, Bootstrap Statistical Methods, and Permutation Tests - 20% New Updated problem sets and applications, that demonstrate updated applications to engineering as well as biological, physical and computer science - New Real data examples that use significant real data from actual studies across life science, engineering, computing and business - New End of Chapter review material that emphasizes key ideas as well as the risks associated with practical application of the material
*An Introduction to Probability with de Finetti’s Approach and to Bayesian Statistics*

**Author**: Francesca Biagini,Massimo Campanino

**Publisher:** Springer

**ISBN:** 3319072544

**Category:** Mathematics

**Page:** 246

**View:** 4140

This book provides an introduction to elementary probability and to Bayesian statistics using de Finetti's subjectivist approach. One of the features of this approach is that it does not require the introduction of sample space – a non-intrinsic concept that makes the treatment of elementary probability unnecessarily complicate – but introduces as fundamental the concept of random numbers directly related to their interpretation in applications. Events become a particular case of random numbers and probability a particular case of expectation when it is applied to events. The subjective evaluation of expectation and of conditional expectation is based on an economic choice of an acceptable bet or penalty. The properties of expectation and conditional expectation are derived by applying a coherence criterion that the evaluation has to follow. The book is suitable for all introductory courses in probability and statistics for students in Mathematics, Informatics, Engineering, and Physics.

**Author**: D. V. Lindley

**Publisher:** CUP Archive

**ISBN:** 9780521298674

**Category:** Mathematics

**Page:** 272

**View:** 9044

The two parts of this book treat probability and statistics as mathematical disciplines and with the same degree of rigour as is adopted for other branches of applied mathematics at the level of a British honours degree. They contain the minimum information about these subjects that any honours graduate in mathematics ought to know. They are written primarily for general mathematicians, rather than for statistical specialists or for natural scientists who need to use statistics in their work. No previous knowledge of probability or statistics is assumed, though familiarity with calculus and linear algebra is required. The first volume takes the theory of probability sufficiently far to be able to discuss the simpler random processes, for example, queueing theory and random walks. The second volume deals with statistics, the theory of making valid inferences from experimental data, and includes an account of the methods of least squares and maximum likelihood; it uses the results of the first volume.

**Author**: Howard G. Tucker

**Publisher:** Academic Press

**ISBN:** 1483225143

**Category:** Mathematics

**Page:** 240

**View:** 6700

An Introduction to Probability and Mathematical Statistics provides information pertinent to the fundamental aspects of probability and mathematical statistics. This book covers a variety of topics, including random variables, probability distributions, discrete distributions, and point estimation. Organized into 13 chapters, this book begins with an overview of the definition of function. This text then examines the notion of conditional or relative probability. Other chapters consider Cochran's theorem, which is of extreme importance in that part of statistical inference known as analysis of variance. This book discusses as well the fundamental principles of testing statistical hypotheses by providing the reader with an idea of the basic problem and its relation to practice. The final chapter deals with the problem of estimation and the Neyman theory of confidence intervals. This book is a valuable resource for undergraduate university students who are majoring in mathematics. Students who are majoring in physics and who are inclined toward abstract mathematics will also find this book useful.
*An Introduction*

**Author**: Eugene Lukacs

**Publisher:** Academic Press

**ISBN:** 1483269205

**Category:** Mathematics

**Page:** 254

**View:** 2108

Probability and Mathematical Statistics: An Introduction provides a well-balanced first introduction to probability theory and mathematical statistics. This book is organized into two sections encompassing nine chapters. The first part deals with the concept and elementary properties of probability space, and random variables and their probability distributions. This part also considers the principles of limit theorems, the distribution of random variables, and the so-called student’s distribution. The second part explores pertinent topics in mathematical statistics, including the concept of sampling, estimation, and hypotheses testing. This book is intended primarily for undergraduate statistics students.
*An Introduction to Foundations*

**Author**: S. H. Kim

**Publisher:** CRC Press

**ISBN:** 9780442010065

**Category:** Business & Economics

**Page:** 356

**View:** 5397

This systematic introduction to decision theory also acquaints the reader with the basic concepts and theories of probability and statistics. Assuming only an understanding of calculus, the book can be used as a textbook, or a self-study guide, and is addressed to both students and researchers in fields from engineering and the natural sciences, to management, economics and psychology. Annotation copyright by Book News, Inc., Portland, OR

**Author**: Seymour Lipschutz,John J. Schiller

**Publisher:** McGraw Hill Professional

**ISBN:** 0071368426

**Category:** Mathematics

**Page:** 256

**View:** 7231

Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.
*Simulation and Resampling*

**Author**: Timothy C. Haas

**Publisher:** John Wiley & Sons

**ISBN:** 1118636236

**Category:** Mathematics

**Page:** 312

**View:** 6374

Explores computer-intensive probability and statistics for ecosystem management decision making Simulation is an accessible way to explain probability and stochastic model behavior to beginners. This book introduces probability and statistics to future and practicing ecosystem managers by providing a comprehensive treatment of these two areas. The author presents a self-contained introduction for individuals involved in monitoring, assessing, and managing ecosystems and features intuitive, simulation-based explanations of probabilistic and statistical concepts. Mathematical programming details are provided for estimating ecosystem model parameters with Minimum Distance, a robust and computer-intensive method. The majority of examples illustrate how probability and statistics can be applied to ecosystem management challenges. There are over 50 exercises – making this book suitable for a lecture course in a natural resource and/or wildlife management department, or as the main text in a program of self-study. Key features: Reviews different approaches to wildlife and ecosystem management and inference. Uses simulation as an accessible way to explain probability and stochastic model behavior to beginners. Covers material from basic probability through to hierarchical Bayesian models and spatial/ spatio-temporal statistical inference. Provides detailed instructions for using R, along with complete R programs to recreate the output of the many examples presented. Provides an introduction to Geographic Information Systems (GIS) along with examples from Quantum GIS, a free GIS software package. A companion website featuring all R code and data used throughout the book. Solutions to all exercises are presented along with an online intelligent tutoring system that supports readers who are using the book for self-study.

**Author**: William Mendenhall,Robert J. Beaver,Barbara M. Beaver

**Publisher:** Cengage Learning

**ISBN:** 1133103758

**Category:** Mathematics

**Page:** 744

**View:** 1247

Used by hundreds of thousands of students since its first edition, INTRODUCTION TO PROBABILITY AND STATISTICS, Fourteenth Edition, continues to blend the best of its proven, error-free coverage with new innovations. Written for the higher end of the traditional introductory statistics market, the book takes advantage of modern technology--including computational software and interactive visual tools--to facilitate statistical reasoning as well as the interpretation of statistical results. In addition to showing how to apply statistical procedures, the authors explain how to describe real sets of data meaningfully, what the statistical tests mean in terms of their practical applications, how to evaluate the validity of the assumptions behind statistical tests, and what to do when statistical assumptions have been violated. The new edition retains the statistical integrity, examples, exercises, and exposition that have made this text a market leader--and builds upon this tradition of excellence with new technology integration. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

**Author**: Allen B. Downey

**Publisher:** O'Reilly Germany

**ISBN:** 3868993436

**Category:** Computers

**Page:** 160

**View:** 942

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Full PDF Download Free

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy