**Author**: Vijay K. Rohatgi,A. K. Md. Ehsanes Saleh

**Publisher:**John Wiley & Sons

**ISBN:**1118165683

**Category:**Mathematics

**Page:**744

**View:**8437

Skip to content
# Search Results for: an-introduction-to-probability-and-statistics

**Author**: Vijay K. Rohatgi,A. K. Md. Ehsanes Saleh

**Publisher:** John Wiley & Sons

**ISBN:** 1118165683

**Category:** Mathematics

**Page:** 744

**View:** 8437

The second edition of a well-received book that was published 24 years ago and continues to sell to this day, An Introduction to Probability and Statistics is now revised to incorporate new information as well as substantial updates of existing material.

**Author**: V. K. Rohatgi

**Publisher:** John Wiley & Sons Inc

**ISBN:** N.A

**Category:** Mathematics

**Page:** 684

**View:** 4601

Probability; Random variables and their probability distributions; Moments and generating functions; Random vectors; Some special distributions; Limit theorems; Sample moments and their distributions; The theory of point estimation; Neyman-Pearson theory of testing of hypotheses; Some further results on hypotheses testing; Confidence estimation; The general linear hypothesis; Nonparametric statistical inference; Sequential statistical inference.

**Author**: George G. Roussas

**Publisher:** Elsevier

**ISBN:** 0080495753

**Category:** Mathematics

**Page:** 523

**View:** 5585

Roussas introduces readers with no prior knowledge in probability or statistics, to a thinking process to guide them toward the best solution to a posed question or situation. An Introduction to Probability and Statistical Inference provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. "The text is wonderfully written and has the most comprehensive range of exercise problems that I have ever seen." — Tapas K. Das, University of South Florida "The exposition is great; a mixture between conversational tones and formal mathematics; the appropriate combination for a math text at [this] level. In my examination I could find no instance where I could improve the book." — H. Pat Goeters, Auburn, University, Alabama * Contains more than 200 illustrative examples discussed in detail, plus scores of numerical examples and applications * Chapters 1-8 can be used independently for an introductory course in probability * Provides a substantial number of proofs
*An Introduction to Probability with de Finetti’s Approach and to Bayesian Statistics*

**Author**: Francesca Biagini,Massimo Campanino

**Publisher:** Springer

**ISBN:** 3319072544

**Category:** Mathematics

**Page:** 246

**View:** 500

This book provides an introduction to elementary probability and to Bayesian statistics using de Finetti's subjectivist approach. One of the features of this approach is that it does not require the introduction of sample space – a non-intrinsic concept that makes the treatment of elementary probability unnecessarily complicate – but introduces as fundamental the concept of random numbers directly related to their interpretation in applications. Events become a particular case of random numbers and probability a particular case of expectation when it is applied to events. The subjective evaluation of expectation and of conditional expectation is based on an economic choice of an acceptable bet or penalty. The properties of expectation and conditional expectation are derived by applying a coherence criterion that the evaluation has to follow. The book is suitable for all introductory courses in probability and statistics for students in Mathematics, Informatics, Engineering, and Physics.
*an introduction to probability and statistical inference*

**Author**: Donald R. Byrkit

**Publisher:** N.A

**ISBN:** N.A

**Category:** Mathematics

**Page:** 324

**View:** 6949

**Author**: Sheldon M. Ross

**Publisher:** Elsevier

**ISBN:** 9780080470313

**Category:** Mathematics

**Page:** 640

**View:** 8622

Introduction to Probability and Statistics for Engineers and Scientists, Third Edition, provides an introduction to applied probability and statistics for engineering or science majors . This updated text emphasizes the manner in which probability yields insight into statistical problems, ultimately resulting in an intuitive understanding of the statistical procedures most often used by practicing engineers and scientists. The Third Edition includes new exercises, examples, homework problems, updated statistical material, and more. New exercises and data examples include: the one-sided Chebyshev inequality for data; logistics distribution and logistic regression; estimation and testing in proofreader problems; and product form estimates of life distributions. Real data sets are incorporated in a wide variety of exercises and examples throughout the book, and the enclosed CD-ROM includes unique, easy-to-use software that automates the required computations. This book is intended primarily for undergraduates in engineering and the sciences, and would be of particular interest to students in Industrial Engineering, Operations Research, Statistics, Mathematics, Computer Science, Electrical Engineering, Civil Engineering, Chemical Engineering, and Quantitative Business. It could also be of value in a graduate introductory course in probability and statistics. New in this edition: * New exercises and data examples including: - The One-sided Chebyshev Inequality for Data - The Logistics Distribution and Logistic Regression - Estimation and Testing in proofreader problems - Product Form Estimates of Life Distributions - Observational Studies * Updated statistical material * New, contemporary applications Hallmark features: * Reflects Sheldon Ross's masterfully clear exposition * Contains numerous examples, exercises, and homework problems * Unique, easy-to-use software automates required computations * Applies probability theory to everyday statistical problems and situations * Careful development of probability, modeling, and statistical procedures leads to intuitive understanding * Instructor's Solutions Manual is available to adopters
*Introduction to Probability and Statistics*

**Author**: Hans-Otto Georgii

**Publisher:** Walter de Gruyter

**ISBN:** 9783110191455

**Category:** Mathematics

**Page:** 370

**View:** 4271

This book is a translation of the third edition of the well accepted German textbook 'Stochastik', which presents the fundamental ideas and results of both probability theory and statistics, and comprises the material of a one-year course. The stochastic concepts, models and methods are motivated by examples and problems and then developed and analysed systematically.

**Author**: Géza Schay

**Publisher:** Birkhäuser

**ISBN:** 3319306200

**Category:** Mathematics

**Page:** 385

**View:** 9581

Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises“/p> Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications. Review of the first edition: This textbook is a classical and well-written introduction to probability theory and statistics. ... the book is written ‘for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.’ ... Each new concept is clearly explained and is followed by many detailed examples. ... numerous examples of calculations are given and proofs are well-detailed." (Sophie Lemaire, Mathematical Reviews, Issue 2008 m)

**Author**: G. Jay Kerns

**Publisher:** Lulu.com

**ISBN:** 0557249791

**Category:**

**Page:** N.A

**View:** 8075

**Author**: William Feller

**Publisher:** John Wiley & Sons

**ISBN:** N.A

**Category:** Mathematics

**Page:** 704

**View:** 5148

The exponential and the uniform densities; Special densities. Randomization; Densities in higher dimensions. Normal densities and processes; Probability measures and spaces; Probability distributions in Rr; A survey of some important distributions and processes; Laws of large numbers. Aplications in analysis; The basic limit theorems; Infinitely divisible distributions and semi-groups; Markov processes and semi-groups; Renewal theory; Random walks in R1; Laplace transforms. Tauberian theorems. Resolvents; Aplications of Laplace transforms; Characteristic functions; Expansions related to the central limit theorem; Infinitely divisible distributions; Applications of Fourier methods to ramdom walks; harmonic analysis; Answers to problems.

**Author**: Walter A. Rosenkrantz

**Publisher:** CRC Press

**ISBN:** 9781584888130

**Category:** Mathematics

**Page:** 680

**View:** 4249

Integrating interesting and widely used concepts of financial engineering into traditional statistics courses, Introduction to Probability and Statistics for Science, Engineering, and Finance illustrates the role and scope of statistics and probability in various fields. The text first introduces the basics needed to understand and create tables and graphs produced by standard statistical software packages, such as Minitab, SAS, and JMP. It then takes students through the traditional topics of a first course in statistics. Novel features include: Applications of standard statistical concepts and methods to the analysis and interpretation of financial data, such as risks and returns Cox–Ross–Rubinstein (CRR) model, also called the binomial lattice model, of stock price fluctuations An application of the central limit theorem to the CRR model that yields the lognormal distribution for stock prices and the famous Black–Scholes option pricing formula An introduction to modern portfolio theory Mean-standard deviation diagram of a collection of portfolios Computing a stock’s betavia simple linear regression As soon as he develops the statistical concepts, the author presents applications to engineering, such as queuing theory, reliability theory, and acceptance sampling; computer science; public health; and finance. Using both statistical software packages and scientific calculators, he reinforces fundamental concepts with numerous examples.

**Author**: D. V. Lindley

**Publisher:** CUP Archive

**ISBN:** 9780521298674

**Category:** Mathematics

**Page:** 272

**View:** 1476

The two parts of this book treat probability and statistics as mathematical disciplines and with the same degree of rigour as is adopted for other branches of applied mathematics at the level of a British honours degree. They contain the minimum information about these subjects that any honours graduate in mathematics ought to know. They are written primarily for general mathematicians, rather than for statistical specialists or for natural scientists who need to use statistics in their work. No previous knowledge of probability or statistics is assumed, though familiarity with calculus and linear algebra is required. The first volume takes the theory of probability sufficiently far to be able to discuss the simpler random processes, for example, queueing theory and random walks. The second volume deals with statistics, the theory of making valid inferences from experimental data, and includes an account of the methods of least squares and maximum likelihood; it uses the results of the first volume.

**Author**: William Feller

**Publisher:** John Wiley & Sons

**ISBN:** 9780471257080

**Category:** Mathematics

**Page:** 528

**View:** 2807

Major changes in this edition include the substitution of probabilistic arguments for combinatorial artifices, and the addition of new sections on branching processes, Markov chains, and the De Moivre-Laplace theorem.

**Author**: Willliam Feller

**Publisher:** John Wiley & Sons

**ISBN:** 9788126518067

**Category:**

**Page:** 700

**View:** 5866

· The Exponential and the Uniform Densities· Special Densities. Randomization· Densities in Higher Dimensions. Normal Densities and Processes· Probability Measures and Spaces· Probability Distributions in Rr· A Survey of Some Important Distributions and Processes· Laws of Large Numbers. Applications in Analysis· The Basic Limit Theorems· Infinitely Divisible Distributions and Semi-Groups· Markov Processes and Semi-Groups· Renewal Theory· Random Walks in R1· Laplace Transforms. Tauberian Theorems. Resolvents· Applications of Laplace Transforms· Characteristic Functions· Expansions Related to the Central Limit Theorem,· Infinitely Divisible Distributions· Applications of Fourier Methods to Random Walks· Harmonic Analysis

**Author**: Kenneth Baclawski

**Publisher:** CRC Press

**ISBN:** 9781420065220

**Category:** Mathematics

**Page:** 384

**View:** 1598

Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.

**Author**: Seymour Lipschutz,John J. Schiller

**Publisher:** McGraw Hill Professional

**ISBN:** 0071368426

**Category:** Mathematics

**Page:** 256

**View:** 8010

Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.

**Author**: Howard G. Tucker

**Publisher:** Academic Press

**ISBN:** 1483225143

**Category:** Mathematics

**Page:** 240

**View:** 3541

An Introduction to Probability and Mathematical Statistics provides information pertinent to the fundamental aspects of probability and mathematical statistics. This book covers a variety of topics, including random variables, probability distributions, discrete distributions, and point estimation. Organized into 13 chapters, this book begins with an overview of the definition of function. This text then examines the notion of conditional or relative probability. Other chapters consider Cochran's theorem, which is of extreme importance in that part of statistical inference known as analysis of variance. This book discusses as well the fundamental principles of testing statistical hypotheses by providing the reader with an idea of the basic problem and its relation to practice. The final chapter deals with the problem of estimation and the Neyman theory of confidence intervals. This book is a valuable resource for undergraduate university students who are majoring in mathematics. Students who are majoring in physics and who are inclined toward abstract mathematics will also find this book useful.

**Author**: Allen Downey

**Publisher:** O'Reilly Germany

**ISBN:** 3868993428

**Category:**

**Page:** 138

**View:** 2802

Wenn Sie programmieren konnen, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einfuhrung in die Statistik zeigt Ihnen, wie Sie rechnergestutzt, anstatt auf mathematischem Weg Datenanalysen mit Python durchfuhren konnen. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch fuhrt Sie anhand eines durchgangigen Fallbeispiels durch eine vollstandige Datenanalyse -- von der Datensammlung uber die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmoglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie uber das Schreiben und Testen von Code ein Verstandnis fur die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Uberprufen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zuganglich sind. Lernen Sie etwas uber Themen, die in Einfuhrungen ublicherweise nicht vermittelt werden, beispielsweise uber die Bayessche Schatzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.
*An Introduction*

**Author**: Eugene Lukacs

**Publisher:** Academic Press

**ISBN:** 1483269205

**Category:** Mathematics

**Page:** 254

**View:** 8701

Probability and Mathematical Statistics: An Introduction provides a well-balanced first introduction to probability theory and mathematical statistics. This book is organized into two sections encompassing nine chapters. The first part deals with the concept and elementary properties of probability space, and random variables and their probability distributions. This part also considers the principles of limit theorems, the distribution of random variables, and the so-called student’s distribution. The second part explores pertinent topics in mathematical statistics, including the concept of sampling, estimation, and hypotheses testing. This book is intended primarily for undergraduate statistics students.

Full PDF Download Free

Privacy Policy

Copyright © 2019 Download PDF Site — Primer WordPress theme by GoDaddy