**Author**: Piotr Mikusinski,Michael D. Taylor

**Publisher:**Springer Science & Business Media

**ISBN:**1461200733

**Category:**Mathematics

**Page:**295

**View:**4459

Skip to content
# Search Results for: an-introduction-to-multivariable-analysis-from-vector-to-manifold

**Author**: Piotr Mikusinski,Michael D. Taylor

**Publisher:** Springer Science & Business Media

**ISBN:** 1461200733

**Category:** Mathematics

**Page:** 295

**View:** 4459

Multivariable analysis is of interest to pure and applied mathematicians, physicists, electrical, mechanical and systems engineers, mathematical economists, biologists, and statisticians. This book takes the student and researcher on a journey through the core topics of the subject. Systematic exposition, with numerous examples and exercises from the computational to the theoretical, makes difficult ideas as concrete as possible. Good bibliography and index.
*Regression, Classification, and Manifold Learning*

**Author**: Alan J. Izenman

**Publisher:** Springer Science & Business Media

**ISBN:** 9780387781891

**Category:** Mathematics

**Page:** 733

**View:** 811

This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.

**Author**: Piotr Mikusinski,Jan Mikusiński

**Publisher:** World Scientific Publishing Company

**ISBN:** 9789813202610

**Category:** Calculus

**Page:** 320

**View:** 9914

The book contains a rigorous exposition of calculus of a single real variable. It covers the standard topics of an introductory analysis course, namely, functions, continuity, differentiability, sequences and series of numbers, sequences and series of functions, and integration. A direct treatment of the Lebesgue integral, based solely on the concept of absolutely convergent series, is presented, which is a unique feature of a textbook at this level. The standard material is complemented by topics usually not found in comparable textbooks, for example, elementary functions are rigorously defined and their properties are carefully derived and an introduction to Fourier series is presented as an example of application of the Lebesgue integral.The text is for a post-calculus course for students majoring in mathematics or mathematics education. It will provide students with a solid background for further studies in analysis, deepen their understanding of calculus, and provide sound training in rigorous mathematical proof.
*A Modern Approach To Classical Theorems Of Advanced Calculus*

**Author**: Michael Spivak

**Publisher:** CRC Press

**ISBN:** 0429970455

**Category:** Mathematics

**Page:** 162

**View:** 1577

This little book is especially concerned with those portions of ?advanced calculus? in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level. The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.

**Author**: John M. Lee

**Publisher:** Springer Science & Business Media

**ISBN:** 0387217525

**Category:** Mathematics

**Page:** 631

**View:** 9538

Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why

**Author**: Loring W. Tu

**Publisher:** Springer Science & Business Media

**ISBN:** 1441974008

**Category:** Mathematics

**Page:** 410

**View:** 1453

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

**Author**: R. W. R. Darling

**Publisher:** Cambridge University Press

**ISBN:** 9780521468008

**Category:** Mathematics

**Page:** 256

**View:** 2422

This book introduces the tools of modern differential geometry--exterior calculus, manifolds, vector bundles, connections--and covers both classical surface theory, the modern theory of connections, and curvature. Also included is a chapter on applications to theoretical physics. The author uses the powerful and concise calculus of differential forms throughout. Through the use of numerous concrete examples, the author develops computational skills in the familiar Euclidean context before exposing the reader to the more abstract setting of manifolds. The only prerequisites are multivariate calculus and linear algebra; no knowledge of topology is assumed. Nearly 200 exercises make the book ideal for both classroom use and self-study for advanced undergraduate and beginning graduate students in mathematics, physics, and engineering.

**Author**: James R. Munkres

**Publisher:** CRC Press

**ISBN:** 0429973772

**Category:** Mathematics

**Page:** 384

**View:** 8286

A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.

**Author**: Satish Shirali,Harkrishan Lal Vasudeva

**Publisher:** Springer Science & Business Media

**ISBN:** 0857291920

**Category:** Mathematics

**Page:** 394

**View:** 3375

This book provides a rigorous treatment of multivariable differential and integral calculus. Implicit function theorem and the inverse function theorem based on total derivatives is explained along with the results and the connection to solving systems of equations. There is an extensive treatment of extrema, including constrained extrema and Lagrange multipliers, covering both first order necessary conditions and second order sufficient conditions. The material on Riemann integration in n dimensions, being delicate by its very nature, is discussed in detail. Differential forms and the general Stokes' Theorem are expounded in the last chapter. With a focus on clarity rather than brevity, this text gives clear motivation, definitions and examples with transparent proofs. Much of the material included is published for the first time in textbook form, for example Schwarz' Theorem in Chapter 2 and double sequences and sufficient conditions for constrained extrema in Chapter 4. A wide selection of problems, ranging from simple to more challenging, are included with carefully formed solutions. Ideal as a classroom text or a self study resource for students, this book will appeal to higher level undergraduates in Mathematics.
*Mathematica*

**Author**: N.A

**Publisher:** N.A

**ISBN:** N.A

**Category:** Mathematics

**Page:** N.A

**View:** 5618

**Author**: Stephen T. Lovett

**Publisher:** CRC Press

**ISBN:** 1439865469

**Category:** Mathematics

**Page:** 440

**View:** 8580

From the coauthor of Differential Geometry of Curves and Surfaces, this companion book presents the extension of differential geometry from curves and surfaces to manifolds in general. It provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together the classical and modern formulations. The three appendices provide background information on point set topology, calculus of variations, and multilinear algebra—topics that may not have been covered in the prerequisite courses of multivariable calculus and linear algebra. Differential Geometry of Manifolds takes a practical approach, containing extensive exercises and focusing on applications of differential geometry in physics, including the Hamiltonian formulation of dynamics (with a view toward symplectic manifolds), the tensorial formulation of electromagnetism, some string theory, and some fundamental concepts in general relativity.

**Author**: Igor Kriz,Ales Pultr

**Publisher:** Springer Science & Business Media

**ISBN:** 3034806361

**Category:** Mathematics

**Page:** 510

**View:** 4071

The book begins at the level of an undergraduate student assuming only basic knowledge of calculus in one variable. It rigorously treats topics such as multivariable differential calculus, Lebesgue integral, vector calculus and differential equations. After having built on a solid foundation of topology and linear algebra, the text later expands into more advanced topics such as complex analysis, differential forms, calculus of variations, differential geometry and even functional analysis. Overall, this text provides a unique and well-rounded introduction to the highly developed and multi-faceted subject of mathematical analysis, as understood by a mathematician today.
*A Differential Forms Approach*

**Author**: Harold M. Edwards

**Publisher:** Springer Science & Business Media

**ISBN:** 146120271X

**Category:** Mathematics

**Page:** 508

**View:** 5721

This book is a high-level introduction to vector calculus based solidly on differential forms. Informal but sophisticated, it is geometrically and physically intuitive yet mathematically rigorous. It offers remarkably diverse applications, physical and mathematical, and provides a firm foundation for further studies.
*linear algebra, multivariable calculus, and manifolds*

**Author**: Theodore Shifrin

**Publisher:** John Wiley & Sons Inc

**ISBN:** 9780471526384

**Category:** Mathematics

**Page:** 491

**View:** 8159

Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.

**Author**: Tailen Hsing,Randall Eubank

**Publisher:** John Wiley & Sons

**ISBN:** 0470016914

**Category:** Mathematics

**Page:** 480

**View:** 7184

Functional data is data in the form of curves that is becoming a popular method for interpreting scientific data. Statistical Analysis of Functional Data provides an authoritative account of function data analysis covering its foundations, theory, methodology, and practical implementation. It also contains examples taken from a wide range of disciplines, including finance, medicine, and psychology. The book includes a supporting Web site hosting the real data sets analyzed in the book and related software. Statistical researchers or practitioners analyzing functional data will find this book useful.

**Author**: Leon Simon

**Publisher:** Morgan & Claypool Publishers

**ISBN:** 159829802X

**Category:** Technology & Engineering

**Page:** 132

**View:** 816

The text is designed for use in a forty-lecture introductory course covering linear algebra, multivariable differential calculus, and an introduction to real analysis. The core material of the book is arranged to allow for the main introductory material on linear algebra, including basic vector space theory in Euclidean space and the initial theory of matrices and linear systems, to be covered in the first ten or eleven lectures, followed by a similar number of lectures on basic multivariable analysis, including first theorems on differentiable functions on domains in Euclidean space and a brief introduction to submanifolds. The book then concludes with further essential linear algebra, including the theory of determinants, eigenvalues, and the spectral theorem for real symmetric matrices, and further multivariable analysis, including the contraction mapping principle and the inverse and implicit function theorems. There is also an appendix which provides a nine-lecture introduction to real analysis. There are various ways in which the additional material in the appendix could be integrated into a course--for example in the Stanford Mathematics honors program, run as a four-lecture per week program in the Autumn Quarter each year, the first six lectures of the nine-lecture appendix are presented at the rate of one lecture per week in weeks two through seven of the quarter, with the remaining three lectures per week during those weeks being devoted to the main chapters of the text. It is hoped that the text would be suitable for a quarter or semester course for students who have scored well in the BC Calculus advanced placement examination (or equivalent), particularly those who are considering a possible major in mathematics. The author has attempted to make the presentation rigorous and complete, with the clarity and simplicity needed to make it accessible to an appropriately large group of students. Table of Contents: Linear Algebra / Analysis in R / More Linear Algebra / More Analysis in R / Appendix: Introductory Lectures on Real Analysis
*An Index to the Publishers' Trade List Annual*

**Author**: N.A

**Publisher:** N.A

**ISBN:** N.A

**Category:** American literature

**Page:** N.A

**View:** 9479

**Author**: David Bachman

**Publisher:** Springer Science & Business Media

**ISBN:** 0817683046

**Category:** Mathematics

**Page:** 156

**View:** 4256

This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.

**Author**: Rajnikant Sinha

**Publisher:** Springer

**ISBN:** 8132221044

**Category:** Mathematics

**Page:** 485

**View:** 9340

This book offers an introduction to the theory of smooth manifolds, helping students to familiarize themselves with the tools they will need for mathematical research on smooth manifolds and differential geometry. The book primarily focuses on topics concerning differential manifolds, tangent spaces, multivariable differential calculus, topological properties of smooth manifolds, embedded submanifolds, Sard’s theorem and Whitney embedding theorem. It is clearly structured, amply illustrated and includes solved examples for all concepts discussed. Several difficult theorems have been broken into many lemmas and notes (equivalent to sub-lemmas) to enhance the readability of the book. Further, once a concept has been introduced, it reoccurs throughout the book to ensure comprehension. Rank theorem, a vital aspect of smooth manifolds theory, occurs in many manifestations, including rank theorem for Euclidean space and global rank theorem. Though primarily intended for graduate students of mathematics, the book will also prove useful for researchers. The prerequisites for this text have intentionally been kept to a minimum so that undergraduate students can also benefit from it. It is a cherished conviction that “mathematical proofs are the core of all mathematical joy,” a standpoint this book vividly reflects.
*Revised*

**Author**: Lynn Harold Loomis,Shlomo Sternberg

**Publisher:** World Scientific Publishing Company

**ISBN:** 9814583952

**Category:** Mathematics

**Page:** 596

**View:** 6946

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Full PDF Download Free

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy