**Author**: Piotr Mikusinski,Michael D. Taylor

**Publisher:**Springer Science & Business Media

**ISBN:**1461200733

**Category:**Mathematics

**Page:**295

**View:**3505

Skip to content
# Search Results for: an-introduction-to-multivariable-analysis-from-vector-to-manifold

**Author**: Piotr Mikusinski,Michael D. Taylor

**Publisher:** Springer Science & Business Media

**ISBN:** 1461200733

**Category:** Mathematics

**Page:** 295

**View:** 3505

Multivariable analysis is of interest to pure and applied mathematicians, physicists, electrical, mechanical and systems engineers, mathematical economists, biologists, and statisticians. This book takes the student and researcher on a journey through the core topics of the subject. Systematic exposition, with numerous examples and exercises from the computational to the theoretical, makes difficult ideas as concrete as possible. Good bibliography and index.

**Author**: Piotr Mikusinski,Jan Mikusiński

**Publisher:** World Scientific Publishing Company

**ISBN:** 9789813202610

**Category:** Calculus

**Page:** 320

**View:** 2139

The book contains a rigorous exposition of calculus of a single real variable. It covers the standard topics of an introductory analysis course, namely, functions, continuity, differentiability, sequences and series of numbers, sequences and series of functions, and integration. A direct treatment of the Lebesgue integral, based solely on the concept of absolutely convergent series, is presented, which is a unique feature of a textbook at this level. The standard material is complemented by topics usually not found in comparable textbooks, for example, elementary functions are rigorously defined and their properties are carefully derived and an introduction to Fourier series is presented as an example of application of the Lebesgue integral.The text is for a post-calculus course for students majoring in mathematics or mathematics education. It will provide students with a solid background for further studies in analysis, deepen their understanding of calculus, and provide sound training in rigorous mathematical proof.

**Author**: Lokenath Debnath,Piotr Mikusinski

**Publisher:** Elsevier

**ISBN:** 0080455921

**Category:** Mathematics

**Page:** 600

**View:** 6838

Building on the success of the two previous editions, Introduction to Hilbert Spaces with Applications, Third Edition, offers an overview of the basic ideas and results of Hilbert space theory and functional analysis. It acquaints students with the Lebesgue integral, and includes an enhanced presentation of results and proofs. Students and researchers will benefit from the wealth of revised examples in new, diverse applications as they apply to optimization, variational and control problems, and problems in approximation theory, nonlinear instability, and bifurcation. The text also includes a popular chapter on wavelets that has been completely updated. Students and researchers agree that this is the definitive text on Hilbert Space theory. Updated chapter on wavelets Improved presentation on results and proof Revised examples and updated applications Completely updated list of references

**Author**: Satish Shirali,Harkrishan Lal Vasudeva

**Publisher:** Springer Science & Business Media

**ISBN:** 0857291920

**Category:** Mathematics

**Page:** 394

**View:** 4637

This book provides a rigorous treatment of multivariable differential and integral calculus. Implicit function theorem and the inverse function theorem based on total derivatives is explained along with the results and the connection to solving systems of equations. There is an extensive treatment of extrema, including constrained extrema and Lagrange multipliers, covering both first order necessary conditions and second order sufficient conditions. The material on Riemann integration in n dimensions, being delicate by its very nature, is discussed in detail. Differential forms and the general Stokes' Theorem are expounded in the last chapter. With a focus on clarity rather than brevity, this text gives clear motivation, definitions and examples with transparent proofs. Much of the material included is published for the first time in textbook form, for example Schwarz' Theorem in Chapter 2 and double sequences and sufficient conditions for constrained extrema in Chapter 4. A wide selection of problems, ranging from simple to more challenging, are included with carefully formed solutions. Ideal as a classroom text or a self study resource for students, this book will appeal to higher level undergraduates in Mathematics.
*Regression, Classification, and Manifold Learning*

**Author**: Alan J. Izenman

**Publisher:** Springer Science & Business Media

**ISBN:** 9780387781891

**Category:** Mathematics

**Page:** 733

**View:** 3648

This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.

**Author**: Loring W. Tu

**Publisher:** Springer Science & Business Media

**ISBN:** 1441974008

**Category:** Mathematics

**Page:** 410

**View:** 3366

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
*A Modern Approach To Classical Theorems Of Advanced Calculus*

**Author**: Michael Spivak

**Publisher:** CRC Press

**ISBN:** 0429970455

**Category:** Mathematics

**Page:** 162

**View:** 8610

This little book is especially concerned with those portions of ?advanced calculus? in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level. The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.

**Author**: James R. Munkres

**Publisher:** CRC Press

**ISBN:** 0429973772

**Category:** Mathematics

**Page:** 384

**View:** 5890

A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.

**Author**: John M. Lee

**Publisher:** Springer Science & Business Media

**ISBN:** 0387217525

**Category:** Mathematics

**Page:** 631

**View:** 9426

Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why

**Author**: CTI Reviews

**Publisher:** Cram101 Textbook Reviews

**ISBN:** 1497014867

**Category:** Education

**Page:** 50

**View:** 7239

Facts101 is your complete guide to An Introduction to Multivariate Statistical Analysis. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

**Author**: Leon Simon

**Publisher:** Morgan & Claypool Publishers

**ISBN:** 159829802X

**Category:** Technology & Engineering

**Page:** 132

**View:** 1967

The text is designed for use in a forty-lecture introductory course covering linear algebra, multivariable differential calculus, and an introduction to real analysis. The core material of the book is arranged to allow for the main introductory material on linear algebra, including basic vector space theory in Euclidean space and the initial theory of matrices and linear systems, to be covered in the first ten or eleven lectures, followed by a similar number of lectures on basic multivariable analysis, including first theorems on differentiable functions on domains in Euclidean space and a brief introduction to submanifolds. The book then concludes with further essential linear algebra, including the theory of determinants, eigenvalues, and the spectral theorem for real symmetric matrices, and further multivariable analysis, including the contraction mapping principle and the inverse and implicit function theorems. There is also an appendix which provides a nine-lecture introduction to real analysis. There are various ways in which the additional material in the appendix could be integrated into a course--for example in the Stanford Mathematics honors program, run as a four-lecture per week program in the Autumn Quarter each year, the first six lectures of the nine-lecture appendix are presented at the rate of one lecture per week in weeks two through seven of the quarter, with the remaining three lectures per week during those weeks being devoted to the main chapters of the text. It is hoped that the text would be suitable for a quarter or semester course for students who have scored well in the BC Calculus advanced placement examination (or equivalent), particularly those who are considering a possible major in mathematics. The author has attempted to make the presentation rigorous and complete, with the clarity and simplicity needed to make it accessible to an appropriately large group of students. Table of Contents: Linear Algebra / Analysis in R / More Linear Algebra / More Analysis in R / Appendix: Introductory Lectures on Real Analysis
*Revised*

**Author**: Lynn Harold Loomis,Shlomo Sternberg

**Publisher:** World Scientific Publishing Company

**ISBN:** 9814583952

**Category:** Mathematics

**Page:** 596

**View:** 1203

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
*linear algebra, multivariable calculus, and manifolds*

**Author**: Theodore Shifrin

**Publisher:** John Wiley & Sons Inc

**ISBN:** 9780471526384

**Category:** Mathematics

**Page:** 491

**View:** 4561

Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.
*A Differential Forms Approach*

**Author**: Harold M. Edwards

**Publisher:** Springer Science & Business Media

**ISBN:** 0817684123

**Category:** Mathematics

**Page:** 508

**View:** 2441

In a book written for mathematicians, teachers of mathematics, and highly motivated students, Harold Edwards has taken a bold and unusual approach to the presentation of advanced calculus. He begins with a lucid discussion of differential forms and quickly moves to the fundamental theorems of calculus and Stokes’ theorem. The result is genuine mathematics, both in spirit and content, and an exciting choice for an honors or graduate course or indeed for any mathematician in need of a refreshingly informal and flexible reintroduction to the subject. For all these potential readers, the author has made the approach work in the best tradition of creative mathematics. This affordable softcover reprint of the 1994 edition presents the diverse set of topics from which advanced calculus courses are created in beautiful unifying generalization. The author emphasizes the use of differential forms in linear algebra, implicit differentiation in higher dimensions using the calculus of differential forms, and the method of Lagrange multipliers in a general but easy-to-use formulation. There are copious exercises to help guide the reader in testing understanding. The chapters can be read in almost any order, including beginning with the final chapter that contains some of the more traditional topics of advanced calculus courses. In addition, it is ideal for a course on vector analysis from the differential forms point of view. The professional mathematician will find here a delightful example of mathematical literature; the student fortunate enough to have gone through this book will have a firm grasp of the nature of modern mathematics and a solid framework to continue to more advanced studies. The most important feature...is that it is fun—it is fun to read the exercises, it is fun to read the comments printed in the margins, it is fun simply to pick a random spot in the book and begin reading. This is the way mathematics should be presented, with an excitement and liveliness that show why we are interested in the subject. —The American Mathematical Monthly (First Review) An inviting, unusual, high-level introduction to vector calculus, based solidly on differential forms. Superb exposition: informal but sophisticated, down-to-earth but general, geometrically rigorous, entertaining but serious. Remarkable diverse applications, physical and mathematical. —The American Mathematical Monthly (1994) Based on the Second Edition
*Mathematica*

**Author**: N.A

**Publisher:** N.A

**ISBN:** N.A

**Category:** Mathematics

**Page:** N.A

**View:** 9590

**Author**: R. W. R. Darling

**Publisher:** Cambridge University Press

**ISBN:** 9780521468008

**Category:** Mathematics

**Page:** 256

**View:** 739

This book introduces the tools of modern differential geometry--exterior calculus, manifolds, vector bundles, connections--and covers both classical surface theory, the modern theory of connections, and curvature. Also included is a chapter on applications to theoretical physics. The author uses the powerful and concise calculus of differential forms throughout. Through the use of numerous concrete examples, the author develops computational skills in the familiar Euclidean context before exposing the reader to the more abstract setting of manifolds. The only prerequisites are multivariate calculus and linear algebra; no knowledge of topology is assumed. Nearly 200 exercises make the book ideal for both classroom use and self-study for advanced undergraduate and beginning graduate students in mathematics, physics, and engineering.

**Author**: Stephen T. Lovett

**Publisher:** CRC Press

**ISBN:** 1439865469

**Category:** Mathematics

**Page:** 440

**View:** 5766

From the coauthor of Differential Geometry of Curves and Surfaces, this companion book presents the extension of differential geometry from curves and surfaces to manifolds in general. It provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together the classical and modern formulations. The three appendices provide background information on point set topology, calculus of variations, and multilinear algebra—topics that may not have been covered in the prerequisite courses of multivariable calculus and linear algebra. Differential Geometry of Manifolds takes a practical approach, containing extensive exercises and focusing on applications of differential geometry in physics, including the Hamiltonian formulation of dynamics (with a view toward symplectic manifolds), the tensorial formulation of electromagnetism, some string theory, and some fundamental concepts in general relativity.

**Author**: Tailen Hsing,Randall Eubank

**Publisher:** John Wiley & Sons

**ISBN:** 1118762576

**Category:** Mathematics

**Page:** 368

**View:** 7519

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.
*Proceedings of the Third International Symposium on Multivariate Analysis Held at Wright State University, Dayton, Ohio, June 19-24, 1972*

**Author**: Paruchuri R. Krishnaiah

**Publisher:** Academic Press

**ISBN:** 1483265137

**Category:** Mathematics

**Page:** 428

**View:** 6704

Multivariate Analysis — III contains the proceedings of the Third International Symposium on Multivariate Analysis held at Wright State University in Dayton, Ohio, on June 19-24, 1972. The papers explore the theory and applications of multivariate analysis and cover areas such as time series and stochastic processes; distribution theory and inference; characteristic functions and characterizations; and design and analysis of experiments. Classification, modeling, and reliability are also discussed. Comprised of 27 chapters, this volume begins with an introduction to two-dimensional random fields, giving results for a class of Gaussian processes with a multidimensional time parameter. The next chapter deals with concepts of consistency in spectral estimation for multivariate time series and considers the alternative of estimating the spectral distribution function or the spectral density function. Abstract martingales and ergodic theory are also examined, along with methods for assessing multivariate normality; inference and redundant parameters; characterization of the multivariate geometric distribution; and max-min designs in the analysis of variance. This monograph will be useful to statisticians and probabilists, as well as to scientists in other disciplines who are broadly interested in multivariate analysis.
*A Unified Approach*

**Author**: John H. Hubbard,Barbara Burke Hubbard

**Publisher:** N.A

**ISBN:** 9780130414083

**Category:** Mathematics

**Page:** 800

**View:** 4894

This text covers most of the standard topics in multivariate calculus and a substantial part of a standard first course in linear algebra. Appendix material on harder proofs and programs allows the book to be used as a text for a course in analysis. The organization and selection of material present

Full PDF Download Free

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy