Categories, Types and Data Structures

An Introduction to Category Theory for the Working Computer Scientist
Author: Andréa Asperti,G. Longo
Publisher: MIT Press (MA)
ISBN: 9780262011259
Category: Computers
Page: 306
View: 6946

Continue Reading →

An Introduction to Category Theory


Author: Harold Simmons
Publisher: Cambridge University Press
ISBN: 1139503324
Category: Mathematics
Page: N.A
View: 9529

Continue Reading →

Category theory provides a general conceptual framework that has proved fruitful in subjects as diverse as geometry, topology, theoretical computer science and foundational mathematics. Here is a friendly, easy-to-read textbook that explains the fundamentals at a level suitable for newcomers to the subject. Beginning postgraduate mathematicians will find this book an excellent introduction to all of the basics of category theory. It gives the basic definitions; goes through the various associated gadgetry, such as functors, natural transformations, limits and colimits; and then explains adjunctions. The material is slowly developed using many examples and illustrations to illuminate the concepts explained. Over 200 exercises, with solutions available online, help the reader to access the subject and make the book ideal for self-study. It can also be used as a recommended text for a taught introductory course.

An Introduction to the Language of Category Theory


Author: Steven Roman
Publisher: Birkhäuser
ISBN: 331941917X
Category: Mathematics
Page: 169
View: 2362

Continue Reading →

This textbook provides an introduction to elementary category theory, with the aim of making what can be a confusing and sometimes overwhelming subject more accessible. In writing about this challenging subject, the author has brought to bear all of the experience he has gained in authoring over 30 books in university-level mathematics. The goal of this book is to present the five major ideas of category theory: categories, functors, natural transformations, universality, and adjoints in as friendly and relaxed a manner as possible while at the same time not sacrificing rigor. These topics are developed in a straightforward, step-by-step manner and are accompanied by numerous examples and exercises, most of which are drawn from abstract algebra. The first chapter of the book introduces the definitions of category and functor and discusses diagrams,duality, initial and terminal objects, special types of morphisms, and some special types of categories,particularly comma categories and hom-set categories. Chapter 2 is devoted to functors and naturaltransformations, concluding with Yoneda's lemma. Chapter 3 presents the concept of universality and Chapter 4 continues this discussion by exploring cones, limits, and the most common categorical constructions – products, equalizers, pullbacks and exponentials (along with their dual constructions). The chapter concludes with a theorem on the existence of limits. Finally, Chapter 5 covers adjoints and adjunctions. Graduate and advanced undergraduates students in mathematics, computer science, physics, or related fields who need to know or use category theory in their work will find An Introduction to Category Theory to be a concise and accessible resource. It will be particularly useful for those looking for a more elementary treatment of the topic before tackling more advanced texts.

Einführung in die Kategorientheorie

Mit ausführlichen Erklärungen und zahlreichen Beispielen
Author: Martin Brandenburg
Publisher: Springer-Verlag
ISBN: 3662535211
Category: Mathematics
Page: 343
View: 3178

Continue Reading →

Die Kategorientheorie deckt die innere Architektur der Mathematik auf. Dabei werden die strukturellen Gemeinsamkeiten zwischen mathematischen Disziplinen und ihren spezifischen Konstruktionen herausgearbeitet. Dieses Buch gibt eine systematische Einführung in die Grundbegriffe der Kategorientheorie. Zahlreiche ausführliche Erklärungstexte sowie die große Menge an Beispielen helfen beim Einstieg in diese verhältnismäßig abstrakte Theorie. Es werden viele konkrete Anwendungen besprochen, welche die Nützlichkeit der Kategorientheorie im mathematischen Alltag belegen. Jedes Kapitel wird mit einem motivierenden Text eingeleitet und mit einer großen Aufgabensammlung abgeschlossen. An Vorwissen muss der Leser lediglich ein paar Grundbegriffe des Mathematik-Studiums mitbringen. Die vorliegende zweite vollständig durchgesehene Auflage ist um ausführliche Lösungen zu ausgewählten Aufgaben ergänzt.

Category Theory for the Sciences


Author: David I. Spivak
Publisher: MIT Press
ISBN: 0262028131
Category: Computers
Page: 486
View: 1876

Continue Reading →

An introduction to category theory as a rigorous, flexible, and coherent modeling language that can be used across the sciences.

Category theory

an introduction
Author: Horst Herrlich,George E. Strecker
Publisher: N.A
ISBN: N.A
Category: Mathematics
Page: 400
View: 371

Continue Reading →

Danse Macabre

Die Welt des Horrors
Author: Stephen King
Publisher: Heyne Verlag
ISBN: 364105401X
Category: Fiction
Page: 800
View: 6213

Continue Reading →

»Wir erfinden Horror, damit wir im wahren Leben besser klarkommen.« Stephen King Der Meister des Horrors reicht uns die Hand zum Totentanz. Das Grundlagenwerk über die Geschichte des Horrors in Literatur und Film vom Viktorianischen Zeitalter bis heute. Mit einem neuen Essay: »Über das Unheimliche«

Basic Category Theory for Computer Scientists


Author: Benjamin C. Pierce,Benjamin C.. Pierce,Ierce Benjamin
Publisher: MIT Press
ISBN: 9780262660716
Category: Computers
Page: 100
View: 3109

Continue Reading →

Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial * Applications * Further Reading

Principia Mathematica.


Author: Alfred North Whitehead,Bertrand Russell
Publisher: N.A
ISBN: N.A
Category: Logic, Symbolic and mathematical
Page: 167
View: 364

Continue Reading →

Category Theory


Author: Steve Awodey
Publisher: Oxford University Press
ISBN: 0191513822
Category: Mathematics
Page: 256
View: 6221

Continue Reading →

This text and reference book on Category Theory, a branch of abstract algebra, is aimed not only at students of Mathematics, but also researchers and students of Computer Science, Logic, Linguistics, Cognitive Science, Philosophy, and any of the other fields that now make use of it. Containing clear definitions of the essential concepts, illuminated with numerous accessible examples, and providing full proofs of all important propositions and theorems, this book aims to make the basic ideas, theorems, and methods of Category Theory understandable to this broad readership. Although it assumes few mathematical pre-requisites, the standard of mathematical rigour is not compromised. The material covered includes the standard core of categories; functors; natural transformations; equivalence; limits and colimits; functor categories; representables; Yoneda's lemma; adjoints; monads.

Basic Category Theory


Author: Tom Leinster
Publisher: Cambridge University Press
ISBN: 1107044243
Category: Mathematics
Page: 190
View: 3228

Continue Reading →

A short introduction ideal for students learning category theory for the first time.

Moderne Algebra


Author: Bartel Eckmann L. Van der van der Waerden,Emil Artin,Emmy Noether
Publisher: Springer-Verlag
ISBN: 3662364344
Category: Mathematics
Page: 274
View: 4831

Continue Reading →

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Introduction to Higher-Order Categorical Logic


Author: J. Lambek,P. J. Scott
Publisher: Cambridge University Press
ISBN: 9780521356534
Category: Mathematics
Page: 304
View: 1818

Continue Reading →

Part I indicates that typed-calculi are a formulation of higher-order logic, and cartesian closed categories are essentially the same. Part II demonstrates that another formulation of higher-order logic is closely related to topos theory.

Category Theory and Applications

A Textbook for Beginners
Author: Marco Grandis
Publisher: World Scientific
ISBN: 9813231084
Category:
Page: 304
View: 7225

Continue Reading →

Category Theory now permeates most of Mathematics, large parts of theoretical Computer Science and parts of theoretical Physics. Its unifying power brings together different branches, and leads to a deeper understanding of their roots. This book is addressed to students and researchers of these fields and can be used as a text for a first course in Category Theory. It covers its basic tools, like universal properties, limits, adjoint functors and monads. These are presented in a concrete way, starting from examples and exercises taken from elementary Algebra, Lattice Theory and Topology, then developing the theory together with new exercises and applications. Applications of Category Theory form a vast and differentiated domain. This book wants to present the basic applications and a choice of more advanced ones, based on the interests of the author. References are given for applications in many other fields. Contents: IntroductionCategories, Functors and Natural TransformationsLimits and ColimitsAdjunctions and MonadsApplications in AlgebraApplications in Topology and Algebraic TopologyApplications in Homological AlgebraHints at Higher Dimensional Category TheoryReferencesIndices Readership: Graduate students and researchers of mathematics, computer science, physics. Keywords: Category TheoryReview: Key Features: The main notions of Category Theory are presented in a concrete way, starting from examples taken from the elementary part of well-known disciplines: Algebra, Lattice Theory and TopologyThe theory is developed presenting other examples and some 300 exercises; the latter are endowed with a solution, or a partial solution, or adequate hintsThree chapters and some extra sections are devoted to applications

Categories for Types


Author: Roy L. Crole
Publisher: Cambridge University Press
ISBN: 9780521457019
Category: Computers
Page: 335
View: 1199

Continue Reading →

This textbook explains the basic principles of categorical type theory and the techniques used to derive categorical semantics for specific type theories. It introduces the reader to ordered set theory, lattices and domains, and this material provides plenty of examples for an introduction to category theory, which covers categories, functors, natural transformations, the Yoneda lemma, cartesian closed categories, limits, adjunctions and indexed categories. Four kinds of formal system are considered in detail, namely algebraic, functional, polymorphic functional, and higher order polymorphic functional type theory. For each of these the categorical semantics are derived and results about the type systems are proved categorically. Issues of soundness and completeness are also considered. Aimed at advanced undergraduates and beginning graduates, this book will be of interest to theoretical computer scientists, logicians and mathematicians specializing in category theory.

Unglaubliche Zahlen


Author: Ian Stewart
Publisher: Rowohlt Verlag GmbH
ISBN: 3644564310
Category: Mathematics
Page: 448
View: 5729

Continue Reading →

In diesem Buch nimmt der britische Mathe-Guru seine Leser mit auf eine Reise durch das Reich der Zahlen – reelle, rationale, irrationale, komplexe; ganz, ganz kleine und unendlich große, Fraktale, Logarithmen, Hochzahlen, Primzahlen, Kusszahlen und viele mehr. Jedes Kapitel konzentriert sich auf eine Zahl oder Zahlengruppe und erläutert, warum sie so interessant ist. «Jede Zahl hat ihre eigene Geschichte zu erzählen», heißt es im Vorwort. Stewart erzählt sie mit Begeisterung und versteht es geschickt, diese Geschichten miteinander zu verweben, ob es um die Zahl Pi geht oder zum Schluss auch um Geheimcodes, den Rubikwürfel und Sudoku. Darüber hinaus erfährt man viel über die Geschichte der Mathematik und die Rolle, die sie für unsere Entwicklung spielt. Schließlich waren es die Zahlen, so der Autor, «die es der Menschheit ermöglicht haben, sich aus dem Schlamm zu ziehen und nach den Sternen zu greifen».

Die Psychologie des Überzeugens

ein Lehrbuch für alle, die ihren Mitmenschen und sich selbst auf die Schliche kommen wollen
Author: Robert B. Cialdini
Publisher: N.A
ISBN: 9783456843278
Category:
Page: 367
View: 2271

Continue Reading →